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ABSTRACT 

NANOSTRUCTURED ORGANIC/INORGANIC SEMICONDUTOR PHOTOVOLTAICS: 

INVESTIGATION ON MORPHOLOGY AND OPTOELECTRONICS PERFORMANCE 

 

by 

 

W.T.M. Aruna Pushpa Kumara Wanninayake 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Nidal H. Abu-Zahra 

 

Organic solar cell is a promising technology because of the versatility of organic 

materials in terms of tunability of their electrical and optical properties. In addition, their relative 

insensitivity to film imperfections potentially allows for very low-cost high-throughput roll-to-

roll processing. However, the power conversion efficiency of organic solar cell is still limited 

and needs to be improved in order to be competitive with grid parity. This work is focused on the 

design and characterization of a new organic/inorganic hybrid device to enhance the efficiency 

factors of bilayer organic solar cells such as: light absorption, exciton diffusion, exciton 

dissociation, charge transportation and charge collection at the electrodes. In a hybrid solar cell 

operation, external quantum efficiency is determined by these five factors. The external quantum 

efficiency has linear relationship to the power conversation efficiency via short circuit current 

density. 

Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) 

contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a 

longer free path for charge carriers, resulting in a longer diffusional pathway and a larger 

coulomb interaction between electrons and holes. This is triggered by the low dielectric constant 

of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-

hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is the most 
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promising and ideal donor-acceptor pair due to their unique properties. In order to take benefits 

from both organic and inorganic materials, inorganic nanoparticles are incorporated in this 

donor-acceptor polymer structure. 

Light trapping enhances light absorption and increases efficiencies with thinner device 

structure.  In this study, copper oxide nanoparticles are used in the P3HT/PC70BM active layer 

to optimize the optical absorption properties in the blend. In addition, zinc oxide nanoparticles 

are used for tuning the conjugated polymer films due to their high electron accepting ability and 

optical absorption properties. In the zinc oxide structure, electrons exhibit higher mobility, which 

enhances the exciton dissociation efficiency. In addition, metal nanoparticles such as gold are 

added to the hole transport layer to enhance the overall hole transport ability. 

The optimum morphology of P3HT/PCBM films is described by two main features: 1) 

the molecular ordering within the donor or acceptor phase, which affects the  photon absorption 

and carrier mobility; and 2) the scale of phase separation between the donor and the acceptor, 

which can directly influence the exciton dissociation and charge transport and/or collection 

processes. Hence, the molecular ordering and the phase separation between the donor and 

acceptor phases are crucial for solar cells with high efficiency. Optimization of the morphology 

of the organic/inorganic hybrid layers will be achieved via thermal annealing.  

The main goal of this work is to fabricate inorganic nanoparticles incorporated polymer 

PV devices with increased power conversion efficiency (PCE). This goal is achieved through 

four research objectives which are 1) enhancement of exciton generation and morphology by 

CuO NPs, 2) enhancement of exciton transportation and carrier diffusion by thermal annealing, 

3) Improvement of exciton dissociation and electron mobility using ZnO NPs, and 4) 
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improvement of hole collection ability using Au NPs. The key findings in this research can be 

applied to fabricate solar cells with higher power conversion efficiencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

  

v 

© Copyright by W.T.M. Aruna Pushpa Kumara Wanninayake, 2016 

 All Rights Reserved 



www.manaraa.com

  

vi 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................................................................... ii 

TABLE OF CONTENTS ............................................................................................................... vi 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES ....................................................................................................................... xiii 

LIST OF NOMENCLATURE ..................................................................................................... xiv 

LIST OF ABBREVIATIONS ....................................................................................................... xv 

ACKNOWLEDGEMENTS ........................................................................................................ xvii 

CHAPTER 1 ................................................................................................................................... 1 

Introduction ..................................................................................................................................... 1 

1.1 Background ........................................................................................................................... 1 

1.2 Research Motivation and Goals ............................................................................................ 3 

1.3 Novelty .................................................................................................................................. 4 

References ................................................................................................................................... 7 

CHAPTER 2 ................................................................................................................................... 8 

Physics of Organic Photovoltaics ................................................................................................... 8 

2.1 Basic Electronic Structure of Organic Semiconductors ........................................................ 8 

2.1.1 Occupation of the Energy Bands .................................................................................... 9 

2.2 Organic Photovoltaic Principles .......................................................................................... 12 

2.2.1 Photon Absorption ........................................................................................................ 15 

2.2.2 Exciton Diffusion ......................................................................................................... 19 

2.2.3 Exciton Dissociation ..................................................................................................... 22 

2.2.4 Charge Carrier Transportation ...................................................................................... 26 

2.2.5 Charge Carrier Collection ............................................................................................. 28 

2.3 Recombination Process ....................................................................................................... 30 

2.4 Solidification Process of Polymer ....................................................................................... 32 

2.5 Photovoltaic Parameters ...................................................................................................... 34 

References ................................................................................................................................. 38 

CHAPTER 3 ................................................................................................................................. 42 

Experimental Methods .................................................................................................................. 42 



www.manaraa.com

  

vii 

3.1 Materials .............................................................................................................................. 42 

3.1.1 P3HT (poly 3-hexylthiophene) ..................................................................................... 43 

3.1.2 PCBM ([6, 6]-phenyl-C71-butyric acid methyl ester).................................................. 43 

3.1.3 PEDOT: PSS (Poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)) .............. 43 

3.1.4 Copper oxide, Zinc Oxide and Gold nanoparticles ...................................................... 44 

3.2 Device Fabrication .............................................................................................................. 45 

3.2.1 CuO NPs incorporated P3HT/PC70BM solar cells ...................................................... 45 

3.2.2 CuO and ZnO NPs incorporated P3HT/PC70BM solar cells ....................................... 46 

3.2.3 Au/PEDOT: PSS-P3HT/PCBM/CuO solar cells .......................................................... 48 

3.3 Characterization .................................................................................................................. 48 

References ................................................................................................................................. 50 

CHAPTER 4 ................................................................................................................................. 51 

Objective 1: Enhancement of Exciton Generation and Morphology of Polymer Solar Cells by 

CuO NPs ....................................................................................................................................... 51 

4.1 Introduction ......................................................................................................................... 51 

4.2 Results and Discussion ........................................................................................................ 55 

4.2.1 Performance Characteristics ......................................................................................... 55 

4.2.2 Morphology and Surface Characteristics ..................................................................... 65 

4.3 Conclusions ......................................................................................................................... 73 

References ................................................................................................................................. 74 

CHAPTER 5 ................................................................................................................................. 76 

Objective 2: Enhancement of Exciton Transportation and Carrier Diffusion in CuO Incorporated 

Polymer Solar Cells by Thermal Annealing ................................................................................. 76 

5.1 Introduction ......................................................................................................................... 76 

5.2 Results and Discussion ........................................................................................................ 78 

5.2.1 Morphological Analysis ............................................................................................... 78 

5.2.2 Optical and Electrical Properties .................................................................................. 84 

5.3 Conclusions ......................................................................................................................... 92 

References ................................................................................................................................. 94 

CHAPTER 6 ................................................................................................................................. 97 

Objective 3: Improvement of Exciton Dissociation and Electron Mobility in Polymer Solar Cells 

Using ZnO NPs ............................................................................................................................. 97 

6.1 Introduction ......................................................................................................................... 97 



www.manaraa.com

  

viii 

6.2 Results and Discussion ...................................................................................................... 100 

6.2.1 Electrical and Optical Performance ............................................................................ 100 

6.2.2 Annealing Effect ......................................................................................................... 107 

6.3 Conclusion ......................................................................................................................... 115 

References ............................................................................................................................... 117 

CHAPTER 7 ............................................................................................................................... 120 

Objective 4: Improvement of Hole Collection Ability in Polymer Solar Cells Using Au NPs .. 120 

7.1 Introduction ....................................................................................................................... 120 

7.2 Results and Discussion ...................................................................................................... 123 

7.2.1 Performance Characteristics ....................................................................................... 123 

7.2.2 Plasmonic Effect of Au NPs in the PEDOT: PSS Layer ............................................ 128 

7.2.3 Effect of CuO NPs in the Active Layer ...................................................................... 131 

7.2.4 SEM and EDX Analysis ............................................................................................. 134 

7.3 Conclusion ......................................................................................................................... 135 

References ............................................................................................................................... 137 

CHAPTER 8 ............................................................................................................................... 139 

Conclusions and Future Work .................................................................................................... 139 

8.1 Summary and Conclusions ................................................................................................ 139 

8.2 Future Outlook .................................................................................................................. 140 

CURRICULUM VITAE ............................................................................................................. 142 

 

 

 

  



www.manaraa.com

  

ix 

LIST OF FIGURES 

 
Figure 2.1: An illustration of simple two-level system [1] ............................................................. 8 

Figure 2.2: Device architecture of a typical organic photovoltaic device .................................... 13 

Figure 2.3: Illustration of the charge carrier generation process: (a) absorption, (b) exciton 

diffusion, (c) exciton dissociation, (d) charge transport and (e) charge collection [6] ................. 14 

Figure 2.4: Electron excitation in a molecule: a) stable molecules and b) unstable molecules with 

ΔQ adjustment ............................................................................................................................... 16 

Figure 2.5: Schematic presentation of weak coupling regimes in ideal H- and J aggregates. The 

vibrationless ground state is given by � > and the vth vibronic band and free exciton bandwidth 

are depicted as |�� + 1 > and W respectively [7] ....................................................................... 18 

Figure 2.6: Representation of the spectral overlap (J) of a donor (D) emission and acceptor 

absorption ...................................................................................................................................... 20 

Figure 2.7: Schematic presentation of the Exciton diffusion process at low and room 

temperatures [16] .......................................................................................................................... 22 

Figure 2.8: Charge transfer process in organic solar cells (a) direct electron transfer to acceptor 

(b) Forster energy transfer from donor to acceptor [20] ............................................................... 23 

Figure 2.9: Illustration of a polaron pair at the donor-acceptor interface [20] ............................. 24 

Figure 2.10: Schematic representation of charge transport concept [6, 20] ................................. 27 

Figure 2.11: Nongeminate recombination: (a) mobile and a trapped polaron yielding a 

recombination rate ∝ n (b) two mobile polarons yielding a recombination rate ∝ n2 [31] .......... 31 

Figure 2.12: Current density–voltage (J–V) characteristics for a generic illuminated solar cell 

[39] ................................................................................................................................................ 34 

Figure 3.1: Chemical structures of conjugated polymers ............................................................. 42 

Figure 3.2: Schematic illustration of the structure of polymer solar cells .................................... 45 

Figure 4.1: Structure of CuO crystal shown by four unit cells [2] ............................................... 52 

Figure 4.2: Calculated band structures and density of states (DOS) of CuO [2] .......................... 53 

Figure 4.3: Current Density-Voltage characteristics of P3HT/PCBM/CuO-NPs hybrid solar cells

....................................................................................................................................................... 56 

Figure 4.4: External quantum efficiency of P3HT/PCBM/CuO-NPs hybrid solar cells .............. 57 



www.manaraa.com

  

x 

Figure 4.5: Optical absorption spectra of P3HT/PCBM/CuO-NPs hybrid solar cell ................... 58 

Figure 4.6: The absorption spectra of these CuO NPs .................................................................. 60 

Figure 4.7: EDX mapping showing the distribution of elemental copper in the P3HT/PCBM 

active layer of PSCs containing: (a) 0.2 mg, (b) 0.4 mg, (c) 0.6 mg, (d) 0.8 mg and (e) 1 mg CuO 

NPs ................................................................................................................................................ 61 

Figure 4.8: Converted EDX images with the optimized threshold ............................................... 63 

Figure 4.9: (a) Schematic band structure of the P3HT/PCBM/CuO NP active layer, (b) SEM 

image of the polymer solar cell ..................................................................................................... 64 

Figure 4.10: XRD pattern of CuO NPs sample............................................................................. 65 

Figure 4.11: XRD spectra for CuO NPs incorporated P3HT/PCBM thin films ........................... 67 

Figure 4.12: Crystallinity of PSC’s determined by XRD and DSC-Eq: (4.9) .............................. 68 

Figure 4.13: Crystallinity of PSC’s determined by XRD and DSC-Eq: (4.10) ............................ 70 

Figure 4.14: Effect of CuO NPs on the crystallinity and PCE of the PSCs .................................. 71 

Figure 4.15: AFM images for  P3HT/PCBM layers with (a) No CuO NPs, (b) 0.2mg CuO NPs, 

(c) 0.4mg CuO NPs, (d) 0.6mg CuO NPs, (e) 0.8mg CuO NPs, (f) 1mg CuO NPs ..................... 72 

Figure 5.1: Schematic illustration of internal structure of thin films ............................................ 76 

Figure 5.2: XRD spectra for CuO NPs incorporated P3HT/PCBM thin films after annealing .... 78 

Figure 5.3: Diffraction peak intensity before and after annealing ................................................ 79 

Figure 5.4: Effect of CuO NPs on crystallite size (L) after thermal annealing ............................. 80 

Figure 5.5: Percent crystallinity before and after annealing ......................................................... 82 

Figure 5.6: AFM images for  annealed P3HT/PCBM layers with (a) No CuO NPs, (b) 0.2mg 

CuO NPs, (c) 0.4mg CuO NPs, (d) 0.6mg CuO NPs, (e) 0.8mg CuO NPs, (f) 1mg CuO NPs ... 83 

Figure 5.8: Optical absorption intensities from UV-vis spectroscopy before and after annealing 85 

Figure 5.7: Optical absorption spectra after annealing ................................................................. 87 

Figure 5.9: Effect of annealing on the EQE values of PSCs with CuO NPs ................................ 88 

Figure 5.10: PCE of P3HT/PCBM/CuO-NPs hybrid solar cells before and after annealing ....... 90 

Figure 5.11: Jsc and Voc of P3HT/PCBM/CuO-NPs hybrid solar cells after annealing ................ 91 



www.manaraa.com

  

xi 

Figure 6.1: (a) The wurtzite crystal structure of ZnO with the lattice parameters a and c indicated 

and (b) the calculated band structure of ZnO using the HSE hybrid functional ........................... 97 

Figure 6.2: Graphical representation of the hybrid device architecture (a) Layer structure with 

ZnO buffer layer, (b) energy level diagram ................................................................................ 101 

Figure 6.3: AFM images of active layer (2x2 µm2 scans) with (a) P3HT/PCBM/CuO-0.6mg NPs 

(sample A), (b) P3HT/PCBM/CuO-0.6mg NPs with 20mg of ZnO NPs buffer layer (sample C), 

and (c) P3HT/PCBM/CuO-0.6mg NPs with 40mg of ZnO NPs buffer layer (sample E) .......... 102 

Figure 6.4: Optical absorption spectra of the hybrid solar cells with CuO and ZnO NPs .......... 103 

Figure 6.5: EQE of the hybrid solar cells with ZnO buffer layer ............................................... 104 

Figure 6.6: J-V characteristics of hybrid polymer solar cells ZnO buffer layer ......................... 106 

Figure 6.7: J-V characteristics of hybrid polymer solar cells ZnO buffer layer after annealing 108 

Figure 6.8: Effect of thermal annealing on the EQE values of PSCs with ZnO buffer layer ..... 110 

Figure 6.9: Optical absorption spectra of PSCs with CuO and ZnO NPs before and after 

annealing ..................................................................................................................................... 111 

Figure 6.10: XRD pattern of ZnO NPs sample ........................................................................... 112 

Figure 6.11: XRD spectra for 0.6 mg of CuO NPs incorporated P3HT/PCBM thin films ........ 113 

Figure 6.12: AFM images (2D) of active layer: (a) P3HT/PC70BM/0.6mg CuO NPs (b) 

P3HT/PCBM/CuO-0.6mg NPs with 20mg of ZnO NPs buffer layer (c) P3HT/PCBM/CuO-

0.6mg NPs with 20mg of ZnO NPs buffer layer after annealing ................................................ 114 

Figure 7.1: (a) Schematic indication of surface plasmon resonance on plasmonic nanoparticles 

[5] and (b) an illuminated nanoparticle ....................................................................................... 121 

Figure 7.2: J-V characteristics of hybrid polymer solar cells with different amount of Au NPs in 

PEDOT: PSS layer ...................................................................................................................... 124 

Figure 7.3: EQE of the hybrid solar cells with various Au NPs concentrations in PEDOT: PSS

..................................................................................................................................................... 125 

Figure 7.4: EQE and Jsc of the hybrid solar cells ........................................................................ 126 

Figure 7.5: Optical absorption spectra of the hybrid solar cells with various Au NPs 

concentrations in PEDOT: PSS layer ......................................................................................... 127 

Figure 7.6: Electric field distribution in the PEDOT:PSS:Au NPs/ P3HT:PCBM PSCs [12] ... 128 



www.manaraa.com

  

xii 

Figure 7.7: AFM images (non-contact mode) of PEDOT:PSS layers (2 × 2 µm scans) with (a) No 

Au NPs, (b) 0.02 mg Au NPs, (c) 0.06 mg Au NPs, (d) 0.10 mg Au NPs, (e) 0.14 mg Au NPs, (f) 

0.18 mg Au NPs .......................................................................................................................... 130 

Figure 7.8: Energy band diagram of the P3HT/PCBM/CuO NPs device [17] ........................... 133 

Figure 7.9: (a) EDX mapping showing the distribution of Au NPs in the PEDOT: PSS layer (b) 

SEM image of the hybrid polymer solar cell (c) EDX mapping showing the distribution of 

elemental copper in the P3HT/PCBM active layer ..................................................................... 135 

 

 

  



www.manaraa.com

  

xiii 

LIST OF TABLES 

 
Table 2.1: The state of the reported electrical parameters of polymer solar cells ........................ 37 

Table 3.1: Impurity level in the nanoparticle samples in ppm: (a) CuO NPs, (b) ZnO NPs, and (c) 

Au NPs .......................................................................................................................................... 44 

Table 4.1: Performance parameters of P3HT/PCBM/CuO-NPs hybrid solar cells ...................... 55 

Table 5.1: Comparison of roughness values of the PSCs before and after annealing .................. 84 

Table 5.2: Comparison of maximum light absorption intensities of the CuO NPs and the 

P3HT/PCBM/CuO NPs active layer before and after annealing .................................................. 86 

Table 5.3: Performance parameters of P3HT/PCBM/CuO-NP hybrid solar cells before and after 

annealing (B/A: before annealing, A/A: after annealing) ............................................................. 89 

Table 6.1: Electric parameters of ITO/PEDOT:PSS P3HT/PCBM/CuO-0.6mg NPs/ZnO NPs/ Al 

solar cells. ................................................................................................................................... 105 

Table 6.2: Performance parameters of PEDOT:PSS/P3HT/PCBM/CuO-NPs/ZnO NPs hybrid 

solar cells before and after heat treatment 200℃ for 30 minutes (B/A: before annealing, A/A: 

after annealing) ........................................................................................................................... 107 

Table 6.3: Performance characteristics of polymer solar cells with different annealing 

temperatures ................................................................................................................................ 109 

Table 7.1: Device parameters of ITO/PEDOT:PSS (with Au-NPs)/P3HT/PCBM/ CuO-0.6 mg 

NPs/Al solar cells. ....................................................................................................................... 124 

Table 7.2: The root-mean-square roughness σrms(nm) values of the Au NPs added PEDOT: PSS 

layers ........................................................................................................................................... 130 

 

 

  



www.manaraa.com

  

xiv 

LIST OF NOMENCLATURE 

 

C    Velocity of light 

Eg    Energy band gap  

h    Planck’s constant 

q   Charge of the carriers 

ΔHc    Enthalpy of crystallization 

ΔHm     Enthalpy of melting 

ΔH or Δ
��   Enthalpy of 100% crystalline polymer 

    Power conversion efficiency 

�   Photon absorption efficiency 

��   Charge collection yield 

��     Charge carrier transport yield 

����    Exciton diffusion yield 

����    Exciton dissociation yield 

λ  Wavelength 

σrms    Root mean square roughness 

kB   Boltzmann constant 

��→��   Forster transfer rate 

ν   Frequency 

n   Density of free electrons 

N   Avogadro constant 

NA   Doping density  



www.manaraa.com

  

xv 

LIST OF ABBREVIATIONS 

 

J-V curve  Current density-voltage curve 

AM1.5G Air Mass 1.5 Global 

PCE   Power conversion efficiency 

Jsc   Short-circuit current density 

Voc   Open-circuit voltage 

FF   Fill factor 

EQE   External quantum efficiency 

IQE   Internal quantum efficiency 

IPCE  Incident photon-to-electron conversion efficiency 

Pin   Incident power density 

BHJ   Bulk heterojunction 

CT   Charge-transfer 

DA   Donor-acceptor 

DOS   Density of states 

HOMO  Highest occupied molecular orbital 

LUMO  Lowest unoccupied molecular orbital 

MO   Molecular orbital 

PV   Photovoltaic 

XPS   X-ray photoelectron spectroscopy 

XRD   Single crystal X-ray diffraction 

AFM   Atomic Force Microscopy 



www.manaraa.com

  

xvi 

PL   Photoluminescence 

RMS   Root mean square 

  



www.manaraa.com

  

xvii 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere appreciation and deepest gratitude to my advisor, 

Professor Nidal Abu-Zahra, for introducing an important research field to me and for immense 

encouragement, guidance, and support given throughout the research to succeed this event. I 

believe, the skills that I have learnt from him have largely contributed to make me a better 

researcher. I am very grateful to my co-advisor Professor Benjamin C. Church, for his 

comments, encouragement and support for my work in every possible way to make my study a 

success.  

I am also grateful to my committee members, Prof. Pradeep Rohatgi, Prof. Junhong 

Chen, and Prof. Wilkistar Otieno, for serving on my doctoral committee and reviewing the 

dissertation. Their suggestions, patience and intellectual contributions have helped me complete 

my dissertation successfully. I extend my special thanks to Prof. Junhong Chen for providing me 

with research facilities in his solar cell simulation lab. 

I would like to thank Dr. H. A. Owen at the Biology Department at University of 

Wisconsin-Milwaukee for technical support with SEM analyses and thermal evaporator coating. 

I would also like to thank Dr. Steven Hardcastle for providing me with equipment facilities in his 

lab. He helped me a lot with equipment training, techniques and related issues throughout my 

research. I am pleased to acknowledge with gratitude the worthy assistance offered to me by Dr. 

Mahmoud Algazzar at the beginning of my research. I am very grateful to doctoral student 

Xiaoru Guo for his assistance to characterize the solar cell devices. I would like to express my 

gratitude to Dr. Subhasini Gunasekar and doctoral student Shengyi Li for their assistance, 



www.manaraa.com

  

xviii 

corporation and support to me in numerous ways. My sincere thanks also go to my friends giving 

me courage and help during my research period. 

 



www.manaraa.com

  

 1  

CHAPTER 1 

Introduction 

1.1 Background 

Bulk heterojunction polymer solar cells (PSCs), which are based on solution-processed 

conjugated polymer donor (P3HT: poly 3-hexylthiophene) and fullerene derivative acceptor 

(PCBM: [6, 6]-phenyl-C71-butyric acid methyl ester) materials, have attracted much attention 

due to their advantages of easy fabrication, simple device structure, low cost, light weight, and 

capability to be fabricated into flexible devices [1].  In addition, they can have high optical 

absorption coefficients which offer the possibility of production of very thin solar cells. On the 

other hand, inorganic semiconductors possess better electronic properties, such as high dielectric 

constant, extremely high optical absorption, high charge mobility, and better thermal stability. 

The nanoparticles of these inorganic semiconductors exhibit even better electronic, optical, 

photoconducting, and luminescent properties [2].  

The oxides of transition metals are an important class of semiconductors having 

applications in multiple technical fields such as solar energy transformation. Among transition 

metal oxides, copper oxide nanoparticles (CuO NPs) are of special interest as they are of low 

cost, non-toxic, and have high optical absorption capabilities. CuO is a p-type semiconductor 

which has a band gap energy of 1.5 eV and this value is close to the ideal energy gap of 1.4 eV 

required for solar cells to allow good solar spectral absorption. The ZnO is also a well-known 

and attractive semiconductor material in photovoltaic applications [3]. The n- type ZnO is a 

direct band gap semiconductor with a band gap of 3.44 eV and strong electron acceptor with 

high electron mobility, high thermal conductivity, wide and direct band gap and large exciton 
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binding energy [3]. These properties make ZnO suitable for a wide range of devices, including 

photovoltaic cells.  

Furthermore, the metal nanoparticles such as Au, can be used in conjugated polymer 

films as light-scattering centers which facilitate efficient charge collection at the electrodes. The 

combine effect of these nanoparticles in the PEDOT: PSS/P3HT/PC70BM devices may result in 

higher power conversion efficiency (PCE) of the solar cell. In order to take advantages of both 

organic and inorganic materials, nanoparticles of inorganic semiconductors can be combined 

with semiconducting polymers. The combined absorption bands of both materials can yield 

better sun energy harvest in hybrid photovoltaic-cell [4]. 

To achieve high PCE, the photovoltaic device should possess five crucial factors which 

are photon absorption, exciton diffusion, exciton dissociation, charge carrier transport, and 

charge collection. Sunlight photons which are absorbed inside the device excite the donor 

molecule, leading to the creation of excitons. Efficient conversion of solar energy requires the 

compounds to absorb strongly in the visible region of the spectrum [5]. However, the acceptor 

phase can also absorb light, but for simplicity only the photons that are absorbed by the donor 

phase are considered here. The created excitons start to diffuse within the donor phase and if 

they encounter the interface with the acceptor then a fast dissociation takes place leading to 

charge separation. The resulting metastable electron-hole pairs across the D/A interface may still 

be Coulombically bound and an electric field is needed to separate them into free charges. 

Therefore, at typical operation conditions, the photon-to-free-electron conversion efficiency is 

not maximal. Subsequently, the separated free electrons/holes are transported with the aid of the 

internal electric field, caused by the use of electrodes with different work functions, towards the 

cathode/anode where they are collected by the electrodes and driven into the external circuit [6]. 
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Compared to inorganic solar cells, PSCs usually have insufficient light absorption due to 

the thin active layer which is restricted by the short exciton diffusion length and low carrier 

mobility. The idea behind a heterojunction is to use two materials (donor and acceptor) with 

different electron affinities and ionization potentials [7]. At the interface, the resulted potentials 

are strong and may favor exciton dissociation: the electron will be accepted by the material with 

the larger electron affinity and the hole by the material with the lower ionization potential, 

provided that the differences in potential energy are larger than the exciton binding energy. The 

photo-induced charge separation mainly occurs at the interfaces between inorganic 

semiconductors and conducting polymers, where electrons are injected from the conducting 

polymers into inorganic semiconductors and holes remain in the polymers. This interfacial 

charge separation is capable of preventing the recombination of separated electrons and holes 

[8]. 

 

1.2 Research Motivation and Goals 

As the global energy demand continues to increase every year, the limiting supply of the 

current main energy sources (oil, coal, uranium) and their detrimental long-term effects on the 

natural balance on our planet, underscore the urgency of developing renewable energy sources. 

The renewable energy sources which neither run out nor have any significant harmful effects on 

the environment. Harvesting energy directly from the sunlight using photovoltaic (PV) 

technology is being widely recognized as an essential component of future global energy 

production. 

A great deal of research has been implemented on fabricating different photovoltaic 

devices to extract sun energy which are based on organic and inorganic semiconductors. 
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However, there are still critical drawbacks of the PCE due to insufficient photon absorption, low 

carrier mobility and less exciton dissociation. Further studies are needed to find ways and means 

to solve these problems.  

The main goal of this research is to design inorganic nanoparticles incorporated polymer 

PV devices with increased power conversion efficiency (PCE) through enhancing the efficiency 

factors of photon absorption, exciton diffusion, exciton dissociation, charge carrier transport, and 

charge collection. A secondary goal is to understand and explain the effect of inorganic 

nanoparticles (CuO, ZnO and Au NPs) on power conversion efficiencies of the organic/inorganic 

hybrid devices. 

 

1.3 Novelty  

Previous studies [7, 8] of hybrid solar cells have directly incorporated inorganic 

nanoparticles (INPs) as electron acceptors (ZnO, TiOx, or CdSe INPs), light-harvesting 

absorbers, or light-scattering centers (Au, Ag, or CdSe INPs) in conjugated polymer film. 

Compared to these inorganic NPs, CuO NPs have excellent electronic and optical properties 

including high light absorption in the range of visible region. Since CuO is a photogenerating 

material it will inject the excess electrons to the structure. Hence, P3HT donor property could be 

tuned by generating electrons from the CuO NPs. However, to the best of our knowledge, there 

is no published work on the use of CuO NPs to improve the light absorption in the P3HT/PCBM 

active layer.  

The charge injecting possibility from the photo active layer to the electrodes is 

represented by the charge collection efficiency. The magnitude of the conduction band energy 

level of the accepter material is a critical parameter for better electron injection into the cathode. 
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For possible electron injecting, this should be lower than the work function of donor. 

Correspondingly, the magnitude of conduction band energy level should be greater than the work 

function of the anodic material for possible hole injection to anode.  Considering the conduction 

and valence band energy levels of CuO and ZnO, they are most suitable for donor and acceptor 

pair. The electron accepting property of ZnO could modify the PC70BM material providing 

better exciton dissociation efficiency. Furthermore, the metallic nanoparticles such as Au NPs 

contribute to reflect and scatter the light increasing the optical absorption in the thin films.  

However, no conclusive work has been conducted to study the role of CuO, ZnO and Au NPs in 

the P3HT/PC70BM thin film solar cells. This study will be revealing the phenomena behind this. 

The morphology of the polymer film is also an important factor to maximize the power 

conversion efficiency of the active films, as it describes the energy level, band gap and the hole 

mobility of the conjugated polymer. In general, morphology in materials research is the study of 

forms comprising shape, size, and structure. For nanostructured materials, morphology has 

special significance since the form of nanoparticles dictates physical and chemical properties [9, 

10]. Unlike bulk materials, properties of nanomaterials are strongly correlated to shape, which is 

attained during growth through a self-assembling process dictated by the interplay of size and 

molecular interactions [10, 11]. Deviations from bulk properties become prominent as the size of 

nanomaterials starts to be comparable to the size of constituent molecules or to some other 

characteristic length scale like electron mean-free path [9]. In a typical application, one deals 

with a collection of nanomaterials, which may be dispersed in a matrix [12] forming a composite 

material. Compared to their inorganic counterparts, the key challenges of nanoparticles 

incorporated P3HT/PCBM thin films are high exciton binding energy and the short diffusion 
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length of excitons. To overcome these, the tailoring of the internal morphology of the active 

layer is as important as the electronic properties of the polymers. 

The optimum morphology of P3HT/PCBM films describes two main features: 1) the 

molecular ordering within the donor or acceptor phase, which affects the  photon absorption and 

carrier mobility; and 2) scale of phase separation between the donor and the acceptor, which can 

directly influence the exciton dissociation and charge transport and/or collection processes [13]. 

The aforementioned factors are crucial for solar cells with high performance efficiency. 

Therefore, optimization of the morphology of CuO NPs incorporated P3HT/PCBM thin films by 

thermal annealing will be investigated. In this study the focus is on the influence of external 

parameters; such as materials, composition, solvents and annealing, on the formation of the 

surface and internal morphology and its influence on spectroscopic properties and photovoltaic 

performance. The morphology of the active layer is probed with imaging and scattering 

techniques. The following key questions are addressed in this work: how can the morphology of 

the active layer in an organic solar cell be controlled? And to what extent does the morphology 

influence the efficiency of the active layer? In addition, this will be the first demonstration that 

P3HT/PCBM thin films with added CuO NPs can be tuned by thermal annealing treatment. 
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CHAPTER 2 

Physics of Organic Photovoltaics 

2.1 Basic Electronic Structure of Organic Semiconductors 

Both organic and inorganic semiconductors are characterized in terms of charge carrier 

transport between two quasi-continua of energy levels. The energetically lower quasi-continuum 

level is fully occupied by electrons, whereas the upper one is nearly empty at T=0 K. They are 

separated by an energy gap (Eg) which is equal to kBT at average temperatures T. At room 

temperature this energy gap is nearly equal to 0.26meV [1]. Therefore, an electron transition 

from the lower level to the upper level by thermal excitation is impossible at room temperature. 

In the region within the lower and upper levels (quasi-continua), there are no available quantum 

levels. This region is called forbidden region with energy gap Eg as shown in the Figure 2.1 [1]. 

 

 

 

 

 

 

 

Figure 2.1: An illustration of simple two-level system [1] 

 

In perfectly crystallized ideal inorganic semiconductor, the valence band (lower level) is 

delocalized over the whole material. In the organic semiconductors, the primitive units are 

molecules which have weak Van-der-Waals coupling bonds leading to lower delocalization of 
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the energy levels. These energy bands are created due to the occupied binding orbitals of the 

single molecules which are called molecular orbitals (MO). The highest occupied molecular 

orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the organic 

semiconductor are set to the valence band in inorganic semiconductors and conduction band 

respectively. Here HOMO is represented by the lower energy level of the donor material while 

the LUMO is represented by the upper energy level of the acceptor material of donor-acceptor 

(D/A) dual system in the organic solar cells [1].  

 

2.1.1 Occupation of the Energy Bands  

The occupation of the upper energy level is very low in the dark condition (radiation of 

300 K) and under thermally equilibrium state. The Fermi-Dirac statistic describes the probability 

of occupation fF (E) of an electron (half-integer spin particles when neglecting mutual 

interaction) with energy E [2]; 

 ��(�) = �
 !"#$%$&'() *+�                                                      (2.1) 

where EF is the Fermi energy.  

The occupied number n of electrons per unit volume within the energy levels of [E, E + dE], is 

given by integral in energy over the product of states occupation probability fF (E) and the 

density of states De (E) in this energy interval. The electron density between E and (E + dE) can 

be expressed as [2];  

                                                       ,-(�) = . /0(�)��(�),�                                                 (2.2) 

 

The De (E) describes the number of occupied electrons in a distinct energy level within an 

arbitrary volume of the semiconductor material. To have a clear idea about density of state of De 
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(E), a simple model of free electron gas in three-dimensional space can be considered. The 

solution of the stationary Schrödinger equation of an electron in a box with edge length L in real 

space can be written as [2], 

                                                   − ℏ3
4� ∇46(78) + 9(78)6(78) = �6(78)                                       (2.3) 

The general solution represents an electron wave of the form exp(±>. 7). Electric field (@) can 

accelerate an electron wave packet and the energy can be obtained as; 

                                                                    A = − BC
ℏ3

�3D
�E3                                                                 (2.4)                 

                                                           �D
�E = ℏ3E

�∗                                                            (2.5) 

The free electron mass can be replaced by effective mass which incorporates the electronic 

interactions with the lattice. 

            H∗ = ℏ3
�3D/�E3                                                                 (2.6) 

Here, k is the wave vector and k = 2π/L, which results directly from the solution of the stationary 

Schrödinger equation. Hence for allowed k-value in three dimensions, the volume is (2π/L)3. 

Considering a sphere in k-space, the number of allowed states N can be written as the ratio 

between the volume of the sphere and the volume of k-value. For counting the degeneracy of the 

spin this should be multiplied by two [1, 2]. 

                                                          J(>) = K LM NEO
4N PM O .2 =  QEO

LN3                                                     (2.7) 

Where, V=L3 represents the real space crystal volume. Replacing k in Equation 2.7 with energy 

E, 

 
�R
�D = �S TOU3V3W∗$ℏ3 XO 3M Y

�D = Q
4N3 V4�∗

ℏ3 XL 4M �� 4M = /0(�)9                           (2.8) 
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Using equation 2.2, the density of electrons n (n=N/V) in the conduction band can then be 

calculated.   

Z = [ /0
\

D]
(�)��(�),� ≈ [ 4` a2H∗

ℎ2 d
3 2M (� − �f)1 2M 1

ghi � − �j>kl + 1 ,�\

D]
 

                    = J�ghi V− D]mD&E(n X                                                                                               (2.9) 

where,  J� = 2 V4N�∗E(n
o3 XL 4M

 is effective density of state and EC is the energy of the conduction 

band edge. The equation can be used for smaller n compared to NC. Using similar methods, the 

density of holes p which is unoccupied electron states in the valance band can be obtained [1, 2]. 

                           i = . /0Dpm\ (�)q1 − ��(�)r,� = JQghi V− D&mDTE(n X                                   (2.10) 

The NV is the effective density of state of the valence band and EV is the energy of the valence 

band edge. 

Hence, the production of electrons and holes densities can be expressed as, 

                               Zi = Z�4 = J�JQghi V− D]mDTE(n X = J�JQghi V− DsE(nX                         (2.11) 

 In the intrinsic semiconductors, occupation of the conduction band is a result from thermal 

excitation of electrons from the valence to conduction band. Therefore, intrinsic semiconductors 

have equal electron and hole densities (n = p = ni) in the relevant energy levels.  

Under the illuminated condition, electron in the valance band can absorb energy photons 

which exceed the Eg energy gap and excited to the conduction band leaving a hole in the valence 

band. Hence, electrons and holes densities will be increased with same amounts as determined by 

the charge carrier generation rate G. Therefore, this system cannot be described by above 

Equation (2.11). The Boltzmann statistics associated with two separate quasi-Fermi energies for 
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electrons and holes will address new system. The corresponding densities of electrons and holes 

can be expressed as: 

                                                    Z = J�ghi V− DtmD&,tE(n X                                                      (2.12) 

  i = JQghi V− D&,TmDTE(n X                                                      (2.13) 

Here EF, C and EF, V are the quasi-Fermi energy levels (QFL) for electrons and holes respectively. 

The production of electrons and holes densities can be expressed as [2], 

                 

                     Zi = JQJvghi V− D]mDTE(n X ghi V− D&,tmD&,TE(n X = Z�4ghi V− D&,tmD&,TE(n X                      (2.14) 

 

The opposite process of the generation is charge carrier recombination R. This electron-

hole pair annihilation generally occurs when the excited electron–hole pairs recombine back to 

the ground state before they fully dissociate into free charge carriers. This process is known as 

geminate recombination. Even after dissociation, the free holes and electrons can recombine each 

other and come back to the ground state which is called nongeminate recombination. In both 

cases the incident photon energy is lost and few charge carriers are contributed to the 

photocurrent [3].  

 

2.2 Organic Photovoltaic Principles 

The organic photovoltaics represent the carbon molecule based optoelectronic devices 

which convert light to electricity. These organic photovoltaics cells purely made of organic 

compounds as well as hybrid solar cells which combine organic and inorganic materials. The 

organic photovoltaic devices consist of a multilayer structure including cathode, active layer, 

hole transport layer and anode. A layer structure of typical photovoltaic device is shown in 
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Figure 2.2. Conducting and transparent glass substrates like indium tin oxide (ITO) are used for 

the anode. The cathode material should be a metal layer. The hole transport layer is composed of 

conducting polymer which can be modified by optical spaces to improve the solar cell efficiency. 

The main layer of the device is the active layer in which the incident light is directly converted to 

charge carriers. The input light photons to the solar cell through transparent electrode are 

absorbed by the active layer.  

 

 

 

 

 

 

 

 

Figure 2.2: Device architecture of a typical organic photovoltaic device 

 

Most of the organic semiconductors in the active layer are conjugated polymers such as 

polythiophenes, polyphenylenevinylenes and polypyrrols.  These conjugated polymers consist of 

a backbone with alternating single and double bonds resulting in bonding (π) and anti-bonding 

(π∗) orbital states which are energetically separated within a few eV. These states form the 

HOMO and the LUMO with an energy gap Eg in the range of 1.5 eV to 3 eV [4]. However, the 

electrons-holes generation in the active layer is a multi-step complex process due to the high 

exciton binding energies (∼ 0.5 eV) as well as a short exciton diffusion length (∼ 10 nm) [5]. 

Figure 2.3 shows this process schematically. 
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Figure 2.3: Illustration of the charge carrier generation process: (a) absorption, (b) exciton 

diffusion, (c) exciton dissociation, (d) charge transport and (e) charge collection [6] 

 

After light incident on the active layer, an energy photon is absorbed by an organic donor 

semiconductor generating an exciton to the structure. Self-exciton dissociation probability in the 

pure donor material is very low due to the high exciton binding energy. Therefore, an acceptor 

material should be included in the structure to form an n-type and p-type interface between the 

molecules. The generated exciton has to diffuse to this D/A interface to dissociate and after the 

exciton dissociation, the separated charge carriers are transported to the electrodes. 

Interpenetrating blends of donor acceptor semiconductors are much better than the bilayer 

system due to their high exciton binding energy and short exciton diffusion length [6]. The 

electrodes can collect the charge carriers and direct to an external circuit. These five steps 

strongly affect the power conversion efficiency (PCE) of organic photovoltaic devices.   
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2.2.1 Photon Absorption 

The photoelectron generation process initiates with the photon absorption in all kind of 

solar cells as shown in Figure 2.3a. In the organic materials, after absorbing a photon, electron is 

excited from the HOMO energy level to the LUMO energy level. The energy of the incident 

photon E = hν = hc/λ should exceed the Eg value for successful electron transition from HOMO 

to LUMO. The Einstein’s absorption coefficient (Blu) determines the probability of exciting an 

electron by absorbing an energy photon. If an electron is exciting from a lower electronic state l 

to an upper electronic state u [6] the Einstein’s absorption coefficient can be written as,  

kxy = v
- . z({)

o{ ,|                            (2.15) 

where c/n represents the speed of light in a material with refractive index n, h is Planck’s 

constant and ν the frequency of the photons. σ (ν) is the cross section to capture a photon. The 

relationship of this cross section to the extinction coefficient ϵ (ν) can be expressed as [6], 

 

}(|)⍺ @ (|)                     (2.16) 

Imaginary part of the complex refractive index represents the extinction coefficient ϵ (ν) which 

describes the attenuation of light in a material. Ignoring the scattering effect, ϵ (ν) is equal to the 

absorption coefficient α (ν) of the material. The shape of the absorption spectra of organic 

molecules is determined by the type of monomers and they exhibit both sharp peaks as well as 

extended fine structures from vibrational excitations. These fine structures arise with variation of 

the molecular structure which is resulted by electronic excitation in organic molecules leading to 

an expansion of the chemical bonds [7]. 

Two different electronic states with vibrational modes of a molecule are depicted in 

Figure 2.4. The upper band (u) and lower band (l) represent the electronic sates and m and n are 
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relevant vibrational levels respectively.  Q and E indicate the displacement coordinate and the 

energy respectively. The vertical lines of the Figure 2.4 represent the electronic transitions of a 

molecule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Electron excitation in a molecule: a) stable molecules and b) unstable molecules with 

ΔQ adjustment 

 

The Franck-Condon principle states that as electrons move faster than nuclei, the nuclei 

are effectively stationary during an electronic transition. Therefore, there is little or no geometry 

change in the molecular system [7].  

As shown in the Figure 2.4(a), without displacement an electron is excited from the 

lowest vibrational state m = 0 of the lower electronic level l to the lowest vibrational state n = 0 

of the upper electronic level u. Depending on the life time of the excited state, the absorption 

spectrum of these types of transition consists of a single peak with a certain width. However, the 

electron excitations of organic materials with certain spatial displacements allow the transitions 

to different vibrational states of n. The overlapped initial and the final state of wave functions 

indicate the probability of the electron transition [7]. The quantity Snm which is the overlap-

integral between the ground and excited state wavefunctions can be written as; 
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                                                   �-� = . 6-�∗\m\ (h)6�0 (h),h                                                (2.17) 

Here, 6 is the normalized wavefunction, � denotes the ground electronic state, g denotes the 

excited electronic state, and h is the bond displacement. A molecule with a different number of 

monomers (np) shows the same shape of absorption spectra (fine structure).  But after increasing 

the np, the absorption spectrum is red shifted [8].  

          ��Z�� =  �� + ∆�
-�                 (2.18) 

where ω(np) is the absorption frequency. 

Excitations in organic materials can be considered as Frenkel excitons (or excitonic 

polarons) along with a vibronically excited central molecule.  This exciton contains an electron-

hole pair which is bounded together with a Coulomb bond. A singlet exciton with an opposite 

spin is created due to the spin conservation of electrons and holes. These excitons are extended 

over several monomer units and the excitons binding energy generally on the order of 0.5 eV. 

However, the Wannier-Mott type excitons are generated in inorganic semiconductors with 

binding energies of about 20 meV. Due to the high binding energy, the excitons created in 

organic materials are not dissociated at the room temperature [9]. 

The intra-chain order as well as the inter-chain interactions influence on the absorption 

spectrum of an organic material. Interactions of two molecules change their electronic properties 

which are basically determined by electron exchange and Coulomb interactions. Therefore, the 

absorption spectrum can be altered after coupling excitations with the vibrational modes of the 

molecules. This phenomenon depends on the type of molecular aggregation. There are two types 

of aggregations called J- and H-aggregates. In J-aggregates, the dipoles are oriented in a head-to-

tail fashion, and in H-aggregates, nearest-neighbor dipoles are oriented in a more side-by-side 

orientation [10]. 
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Figure 2.5: Schematic presentation of weak coupling regimes in ideal H- and J aggregates. The 

vibrationless ground state is given by |� > and the vth vibronic band and free exciton bandwidth 

are depicted as |��+� > and W respectively [7] 

 

The absorption spectrum of a P3HT film spun from chloroform consists two parts: a 

lower-energy area from regions of weakly coupled H-aggregates and a higher-energy area from 

the more disordered intra-chain states. Considering the relative absorbance of the 0-0 and 0-1 

vibronic lines A0−0/A0−1 the free exciton bandwidth W can be extracted [11].    

                          
��%���%� =  -�%�-�%� �D�m�.4K�

D�+�.����                (2.19) 

Here, n0−0 and n0−1 are refractive index at the 0-0 and 0-1 peaks, respectively.  The conjugation 

length increment is leading to a decrease in the free exciton band width W and hence inter-chain 

ordering can be influenced by conjugation length of the molecules. 
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2.2.2 Exciton Diffusion 

The exciton can be considered as a mobile quasi-particle with zero net charge and 

separation of electron-hole is essential for charge transport. However, this dissociation typically 

occurs at the donor and acceptor (D/A) interface due to high binding energy of the exciton at the 

room temperature. Therefore, the excitons generated in the donor material should be diffused to 

the D/A interface. The energy transfer process of the donor – acceptor molecules determines the 

mobility of excitons in the structure. When an exciton is diffusing in a polymer blend, excitation 

is taken place in the donor molecules and the excitation transferring site is the acceptor molecule 

[12, 13]. 

The energy transfer process can be divided in to two main categories which are trivial 

energy transfer process (or photon reabsorption) and the Forster energy (or florescence resonant 

energy transfer process). In trivial energy transfer process, the donor molecule emits an energy 

photon towards acceptor molecule and after absorbing this photon by acceptor, a new excitation 

is created.  

 /∗ → / + ℎ| 

ℎ| + � → �∗ �7 ℎ| + / → /∗ 

Then the energy transfer rate from D-A by phonon reabsorption can be expressed as [6], 

K�m� = �m4               (2.20) 

where R is the distance between donor and acceptor molecules.  

The Forster transfer (F) is a non-radiation process which is typically used dipole – dipole 

coupling to transfer the energy from D to A. This non-radiative transfer of excitation energy 

requires some interaction between a donor and an acceptor molecule. It can occur if the emission 

spectrum of the donor overlaps the absorption spectrum of the acceptor. 
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Figure 2.6: Representation of the spectral overlap (J) of a donor (D) emission and acceptor 

absorption 

 

The strength of the spectral overlap, which is distinguished by the overlap integral (J); J 

can be shown as, 

                                                       � = . �(�)�(�)�mK\� ,�                                                     (2.21) 

The Forster transfer rate can be expressed as [6, 14], 

 ��→�� = �
�� ���� ��

                  (2.22) 

Here, �� represents the lifetime of the donor. R is the distance between donor and acceptor. R0 is 

the critical transfer distance [15].  

                                            ��� ∝  >4 . �K ��(�)@�(�),�                                         (2.23) 

Here, ��(�) describes the normalized donor emission spectrum as a function of wavelength λ. 

The @� (�) is the normalized acceptor extinction coefficient. The k is the dipole orientation factor 

which describes the dipole orientation between the D and A molecules. 

                                                  � = Z� . Z� − 3(Z�. 7)(Z� . 7)                                                (2.24) 

                                                  � = (f� ¡�� − 3f� ¡�f� ¡�)                                             (2.25) 
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Where r is the unit vector of the direction joining donor and acceptor, and nD and nA are the unit 

vectors along the D and A transition moment directions, respectively. θDA is the angle between 

the dipoles of the D and A molecules. The θD and θA are the angles between the corresponding 

dipoles and the connecting vector of molecule D and A. The K varies from 4 to 0 depending on 

parallel to perpendicular arrangement. In the Frost process, the transfer rate >�⟶��   is maximum 

for the parallel dipoles of the donor and acceptor molecules. Also, the distance between the 

molecules has to be sufficiently low (R < 10 nm) due to the >�⟶�� = �m� [15]. 

The exciton diffusion can be explained based on the energy migration process. The 

exciton diffusion can be interpreted as a random hopping-like motion that leads to spreading 

from the areas of high concentration to the areas of low concentration. Generally diffusion can be 

described by the following equation [16]: 

                                                      
£-
£� = /∇4Z − -

�                                                       (2.26) 

where n is the particles concentration, D is the diffusion coefficient, ¤2 is the Laplace operator, 

and � is the exciton lifetime which is in the range of ns. The root mean square displacement of a 

particle from its initial position due to the diffusion process is called diffusion length (LD). The 

LD can be written as: 

                                             ¥� = ¦∑�P3̈
R =  √2/ª�                                                   (2.27) 

Here, dLi represents an ith exciton displacement from its initial position, N is the total number of 

excitons, and Z is the dimensionality of the diffusion. However, exciton diffusion in organic 

semiconductors, the factor of two is ignored as: 

                                                                     ¥� = √/ª�                                                         (2.28) 
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In a disordered material, the LD value approximately gives the average displacement of an 

exciton from its initial position [16-18]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Schematic presentation of the Exciton diffusion process at low and room 

temperatures [16] 

 

The key processes of exciton diffusion in a disordered medium are indicated in Figure 2.7 

considering a Gaussian distribution of excitonic energies. After absorption of a light photon, an 

exciton is created in a conjugated segment with certain energy. For lower energy conjugated 

segments, the exciton is inclined to a downward migration via energy transfer toward the lower 

energy cites. The temperature activated hopping occurs between the similar energy sites with 

approximately same site-to-site distances. These downward migration and thermally activated 

hopping are available for both singlet and triplet excitons [19]. 

 

2.2.3 Exciton Dissociation 

After generating an exciton with the help of a suitable donor and acceptor pair, electron 

and hole are still bounded with Coulomb force. Therefore, this polaron pair has to be separated to 
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have free charge carriers. The excitons dissociation is a two-step process at the donor and 

acceptor (D/A) interface. In generally, polymer phase of the polymer: fullerene systems, absorbs 

the majority of the photons and donor materials absorption is in the range of visible regime. 

Here, the exciton dissociation process is explained for an exciton which is initially generated in 

the donor phase [20].  

The HOMO and LUMO energy levels of the donor and acceptor materials should be 

matched with each other for efficient exciton dissociation (Figure 2.8). A rapid dissociation can 

be obtained at the interfaces of the electronically matching materials which is much faster than 

any decay process. In both charge transfer processes, the electron and hole reside on the acceptor 

and donor materials, respectively [21]. However in this discussion, the charge carriers are 

considered as polarons or quasiparticles which consist of a charge and polarization of the 

surrounding. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Charge transfer process in organic solar cells (a) direct electron transfer to acceptor 

(b) Forster energy transfer from donor to acceptor [20] 
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Figure 2.9: Illustration of a polaron pair at the donor-acceptor interface [20] 

 

The Braun-Onsager model is used to describe the polaron pair dissociation. This model 

can be used to calculate the dissociating probability of a Coulomb-bounded opposite charge pair 

with a given initial distance in a given external electric field. The generated polaron pair can be 

recombined to the ground state or dissociated to free charges. The recombination rate is given by 

�� = ���m�  which is inverse of its lifetime and the dissociation rate is given by Kd [22]. 

The electric field dependent polaron pair-separation is calculated by the Onsager-Braun 

model which gives the probability P (E,T) of electron-hole pair dissociation [22]; 

                                                    «(�, l) = ¬(D,n)
¬(D,n)+¬®                                           (2.29) 

with the field-dependent dissociation rate 

                                     ��(�, l) = L¯
KN���O ghi V− D°¬nX ±�(4²m4³(D,n))

²(m4³(D,n))                            (2.30) 
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                                                              = L¯
KN���O ghi V− D°¬nX �1 + ´ + ³3

L + ⋯ � 
Here γ = qμ/εεo represents the Langevin recombination factor [6] with charge q, μ is the sum of 

hole and electron mobilities and the effective dielectric constant of the organic semiconductor is 

denoted by εεo . The rpp is initial polaron-pair radius, Eb = e2/4π εεorpp is the Coulombic binding 

energy of the charge pair, kT is the thermal energy, J1 is the order one Bessel function and b is 

the reduced field with b = q3F/(8π εεo (kT)2). Thus, the Onsager-Braun model gives the 

probability P (E,T) of electron-hole pair dissociation which can be expressed as; 

  «(�, l) = ¬(D,n)
¬(D,n)+(¶�®)%�                                                         (2.31)            

Here, Kd (F) is replaced with kd (F) = μKd (F). The polaron pair dissociation probability P (E,T)  

strongly relies on the charge carrier mobilities μ and the polaron-pair lifetime τf . Therefore, the 

charge carrier generation efficiency is remarkably higher in the systems with high mobilities and 

long polaron-pair life times, at the acceptor-donor interface [22].  

Considering the disorder in the blend, probability distribution of the excitons with 

different separation distances has been studied using numerical simulations. Hence, a distribution 

of separation distances can be written as: 

                                           «�7��, �, l� = . «(ª, �, l)�(7��\� , ª),ª                                       (2. 32) 

where f (rpp, z) is a normalized distribution function given by: 

                                                ��7��, ª� = K
���O√N ª4ghi �− ·3

���3�                                               (2. 33) 

Where, p (z,E,T) is the dissociation probability at a given distance z in an organic solar cell.  
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2.2.4 Charge Carrier Transportation 

After exciton dissociation and polaron pair separation, the free charge carriers, i.e. the 

polarons, should be transported towards the respective electrodes. Due to the high disordered 

behavior of organic semiconductors, the charge transportation generally occurs by hopping from 

one localized state to the next. This hopping occurs with weakly overlapped wave functions of 

neighboring sites. The Marcus hopping rate νij for a charge transport from site i to site j can be 

written as [23, 24], 

                                        ¸�¹ =  º±¨»º
ℏ V N

¼¬nX� 4M ghi V− (½¾¨»+¼)3
K¼¬n X                                               (2.34) 

where ℏ is the reduced Planck constant, kT is the thermal energy and ξ is the reorganization 

energy. ∆Gij is the Gibbs free energy of two sites i and j. Jij represents the transfer integral. This 

describes the overlap of the wave functions of the sites i and j which is proportional to the 

tunneling rate.  

The Miller–Abrahams expression which is related to phonon-assisted tunneling 

mechanism can be expressed as [20, 25]; 

                                  ¸�¹ = ¸�ghi(¿À7�¹) = Sexp V− ÁÂ¨»¬n X ,    ΔΕ�¹ > 0 (↑ ℎ�iiÇZ�)
1,    ∆Ε �¹  ≤ 0(↓ ℎ�iiÇZ�)           (2.35) 

where γ′ is the inverse localization radius based on the overlap integral of the wave functions 

assuming exponential decay with distance. ν0 is the maximum hopping rate and rij is the distance 

between the i and j sites. The first exponential term describes the tunneling contribution of the 

system. ∆Eij is the energy difference between the sites i and j which is related to the thermal 

activation energy contribution for hops upwards. Next approach for the charge transfer rate is 

based on the polaronic effect, which relates to the coupling between the physical molecule 

configuration and its electronic energy. Therefore, it is assumed that the molecules involved in 



www.manaraa.com

  

 27  

the charge transfer have a different energy configuration for the charge being on one molecule or 

the other [26]. The resulting expression from this analysis can be shown as, 

                                  ¸�¹ = ±3
ℏ

N
²4D°¬n ghi V− D°4¬nX . ghi #− ∆D¨»4¬n − Ê∆D¨»3Ë¬nD°*                             (2. 36) 

where J is related to the overlap integral and Eb is the polaron binding energy. 

Above mentioned methods explain the mesoscopic hopping mechanisms, rather than the 

macroscopic transport properties. However, the corresponding hopping rates can be applied in 

either Monte Carlo simulations or hopping master equations (ME) to simulate the macroscopic 

charge transport [26]. The basic approach of ME is the occupancy ni of site i evolves in time 

according to the equation given by; 

                                         
�-¨�� = ∑ �−Z�¸�¹ + Z¹ ¹̧��¹,¹Ì�                                              (2. 37) 

This assumption is correct for an ensemble of non-interacting particles if ni represents the 

average occupancy of the site over a time scale much higher than the inverse of the characteristic 

hopping frequency. 

 

 

 

 

 

 

 

 

Figure 2.10: Schematic representation of charge transport concept [6, 20] 
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Bassler described the charge transport in a Gaussian density of states with Monte Carlo 

simulations, using the Miller–Abrahams hopping rate and the charge carrier mobility μGMD which 

are dependent on the temperature T and field F [27]; 

                                Í¾Î� = Í\ghi Ï− V 4z
L¬nX4 + Ð #V z

¬nX4 − Σ* j� 4M Ò                                  (2.38) 

Here, σ is called disorder parameter or energetic width of Gaussian density of states distribution. 

C and 2/3 are scaling factors. The ln μ ∝ F1/2 and ln μ ∝ 1/T2 are compatible with recent 

experiments. 

For disordered organic materials, the average charge density can be written by −σ2/kT. 

The σ represents the width of the Gaussian distribution. This is below the center of the density of 

states distribution for a given temperature. The charge transport mechanism involved in hopping 

processes around the transport energy can be shown in Figure 2.10. Charge carriers below the 

transport energy level are immobile and do not contribute to the charge transport. If the transport 

energy is increased due to the thermal activation energy, the number of available states for the 

mobile charge carriers is increased. The total carrier concentration is accounted as the sum of 

mobile, conductive charge carriers around the transport energy, and immobile charge carriers 

trapped in the tails of the Gaussian or exponential density of states. Therefore, the transport 

energy concept grants a method to describe the charge transporting mechanism in disordered 

organic semiconductors in equivalence to band transport plus trapping [20].  

 

2.2.5 Charge Carrier Collection 

After the transporting process, the charge carriers reach to the electrodes of the device. 

The electrodes should extract these carriers from the organic semiconductors and this process is 
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strongly affected by the device architecture. Furthermore, charge recombination strongly 

depends on the charge carrier concentration at the organic semiconductor-metal interface. 

For qualitative analysis, recombination of free charge carriers and space-charge effects can be 

neglected. However, the charge carrier generation depends on the electric field.  The internal 

field in the device is given by E = (V0 –V)/L, where V is the applied voltage. Without 

recombination the photocurrent through the external circuit can be given as, 

                                                            �Ó,�ÔÕ = Ö�¥                                                               (2.39) 

where q is the electric charge, G the generation rate of charge carriers, and L the 

thickness of the active layer. 

According to the Equation 2.30, the Jph is independent of V. Sokel and Hughes [28] 

pointed out that this result is incorrect due to neglected diffusion currents and voltage across the 

device. Using same approximation and including diffusion, Sokel and Hughes (SH) found an 

analytical solution for the photocurrent; 

 �Óo,×Ø = �Ó,�ÔÕ Ù0Õ�VBQ ¬nM X+�
0Õ�VBQ ¬nM Xm� − 4¬n

B Ú                                               (2.40) 

Where, kT /q and V denote the thermal voltage and the internal voltage respectively. 

The most important result is that the equation depends on the voltage across the device, although 

the exact shape can only be reconstructed by a convolution of models concerning polaron pair 

dissociation and charge extraction [28, 29]. Thus, the complete photocurrent can be written as; 

 �Ó = Ö«(j)���ÛÛÛÛ¥ Ù0Õ�VBQ ¬nM X+�
0Õ�VBQ ¬nM Xm� − 4¬n

B Ú                                           (2.41) 

where P(F) is the polaron pair dissociation yield given by Onsager–Braun, equation and Gpp is 

the generation rate of polaron pairs. Here, the free charge generation rate G =P(F)Gpp. 
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2.3 Recombination Process 

The annihilation of electron and hole, denoted as charge carrier recombination has a huge 

impact on the device performance of an organic solar cell. A successfully dissociated electron-

hole pair can be recombined while transporting towards the respective electrodes. This process is 

called nongeminate recombination. If the created electron and hole pair decay to the ground state 

before they dissociate, this is denoted as geminate recombination. Geminate recombination is 

due to low mobility and conductivity in disordered semiconductors and short polaron-pair 

lifetimes [30]. The continuity equation describes the charge carrier dynamics and it can be 

written as [31]; 

                                                         
�-
�� = − �

B
�±Ü�Õ + � − �                                                     (2.42) 

where n is the electron concentration, q the elementary charge and Jn the electron current. The 

optical generation rate G and the recombination rate R. The t and x are the time and the position. 

The generation current JG and the loss current JR can be obtained by integrating the equation 1.33 

[31]. 

                                                    �¾ = −Ö . �(h),h = Ö,���                                                  (2.43) 

                                                    �� = −Ö . �(h)�� ,h = Ö,�                                                (2.44) 

Where d is the thickness of the active layer. The � and �  are spatially uniform generation and 

recombination rates. For low mobility free charges observed in organic semiconductors, a 

nongeminate recombination of the second order Langevin’s theory is often employed. The 

recombination rate given by the Langevin theory as; 

       � = ¿(Zi − Z�4)                                                               (2.45) 
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where charge carrier densities for electrons n and holes p, Z� the intrinsic carrier concentration 

and the Langevin recombination prefactor γ. The Langevin recombination prefactor can be 

described by, 

                                                       ¿ = B
C�CÝ (Í0 + Ío)                                                            (2.46) 

with the effective dielectric constant ϵrϵ0 and the electron and hole mobilities μe and μh [31]. 

 

 

 

 

 

 

 

Figure 2.11: Nongeminate recombination: (a) mobile and a trapped polaron yielding a 

recombination rate ∝ n (b) two mobile polarons yielding a recombination rate ∝ n2 [31] 

 

A mobile charge recombines with a trapped charge carrier is referred to as a first order 

process.  If the trapped charge concentration is higher than the mobile charge density, the density 

of trapped charges is inexhaustible. If the trapped charge concentration is similar or lower than 

the mobile charge carrier concentration, the bimolecular decay is considered as second order 

process. For the organic bulk heterojunction solar cells, the Langevin model can be applied based 

on existing donor and acceptor phases where electrons and holes reside and can mainly 

recombine at the donor/acceptor interface. The Langevin recombination can be altered with the 

active layer morphology, the preparation conditions and the organic materials. Furthermore, a 

thermally activated recombination can reduce recombination rate, or lower the mobility of two 
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charges as shown in Equation 2.45. Other types of losses can occur due to structural defects or 

trapping charges in deep potential states which has low possibility to escape. These trapped 

charges will be recombined by mobile charge. 

 

 

2.4 Solidification Process of Polymer 

The organic semiconductors exhibit high exciton binding energy and the short exciton 

diffusion length due to their intrinsic electronic properties. Therefore, the arrangement of the 

single polymer chains is an important factor for the charge carrier mobility. The mobility of the 

charges in the crystalline regions is higher than the amorphous regions in the organic materials. 

However, the organic molecules form semicrystalline phases, but they do not form fully 

crystalline states. Formation of fully crystalline phases is interrupted by a high entropic 

activation barrier which is created with entanglement of the coiled polymer chains before 

crystallization. The amorphous region consists of entangled polymer chains, impurities and other 

defects. However, the crystallized region contains layered and laterally extended molecular 

structures. The size of the crystal does not depend on the molecular weight of the polymer, 

however it relies on the crystallization temperature. Therefore, crystalline lamellae of the 

polymer can be formed laterally up to micrometer range. The crystallization temperature (Tc) of 

the polymers lies between the glass transition temperature Tg and the melting temperature Tm. 

Polymer crystallites are formed after super-cooling [32, 33]. 

Nuclei formation is the starting step of the polymer crystals in the amorphous melt. 

Nucleation can be defined as formation of a small amount of crystalline material due to 

fluctuations either in density or order in the supercooled melt. In the crystal growing process, 
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these particles (which are called embryos) convert to nuclei in the melt. If there is no second 

phase (existing nuclei) present and the nuclei formation occurs spontaneously due to 

supercooling the phenomenon is called homogenous nucleation [34]. But the heterogeneous 

nucleation occurs only after a second phase is formed (a foreign particle or surface from the 

same polymer nuclei/crystal). To form stable nuclei, the crystallization free energy barrier should 

be overcome. The size of the critical nucleus depends on this free energy barrier; i.e larger 

critical nuclei requiring longer times to form. The free energy of the nucleation can be given by 

[35]; 

                                                    ∆� = ∆�� + ∑ ¿∗A                                                              (2.47) 

Where, ¿∗ is the specific surface free energy and ∆Gc is the free energy of crystallization. 

The large specific area to volume ratio decreases the free energy that can be obtained by 

crystallizing the small volume element of the nucleus. Generally, in a spherical nucleus with 

radius ‘r’, the free energy change can be expressed as [35]: 

                                                 ∆� = K
L `7L∆�� + 4`74¿∗                                                      (2.48) 

These two terms in the equation contribute to increase the free energy until a certain critical 

maximum is reached in free energy surface. 

The nucleation rate is an exponential function of the temperature and it is inversely 

proportional to the volume of crystal domain 9m� as shown in Equations 2.49 and 2.50 

respectively [36]. 

      
�R
�� = J�ghi V− D�+∆¾∗

�n X                                                       (2.49) 

                                             �- ∝ 9m�                                                                         (2.50) 

where N0 is the number of molecules in a unit volume, �� is the free energy of activation for 

diffusion across the phase boundary and Δ�∗
 is the critical free energy barrier for primary 
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nucleation. This critical free energy barrier indicates free energy gain due to nuclei formation at 

high temperature. The behavior of the transport term ED with the temperature is close to the 

viscosity. It remains constant at the high temperatures and rapidly increases at temperatures close 

to the glass transition. In undercoolings, the nucleation is dominated by the ∆G* term and it is ∝ 

1/∆l�4. Hence, the nucleation rate is zero at Tm and a large negative temperature coefficient is 

introduced by exp (-∆G* /RT).  

 

2.5 Photovoltaic Parameters 

The power conversion efficiency (PCE) of a solar cell is defined as: PCE = 

(Jsc.Voc.FF)/Pin, where Jsc is the short circuit current density, Voc is the open circuit voltage, FF is 

the fill factor and Pin is the incident input power. To allow for valid comparison of device 

performance, an international standard for input power is used. This standard is an incident 

spectrum of AM 1.5 G, with an intensity of 1000W/m2 (100 mW/cm2), whilst the cell is at a 

temperature of 25 oC.  

 

 

 

 

 

 

 

 

Figure 2.12: Current density–voltage (J–V) characteristics for a generic illuminated solar cell 

[39] 
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Therefore, there are three major device characteristics which completely determine the efficiency 

of the device. Figure 2.12 shows a typical illuminated J–V characteristic curve which illustrates 

these three characteristics. The above efficiency factors influence the device characteristics of 

organic–inorganic hybrid solar cells [37]. 

The short circuit current density (Jsc) is the maximum photo-current density which can be 

extracted from the device at short circuit conditions. The Jsc is directly related to the external 

quantum efficiency (EQE). This relationship can be expressed as [38], 

                                         ��� = B
ℏv . �Þ� «�-(�) � ,�ßWàáßW¨Ü                                                   (2.51) 

where q is the value of the charge, Pin is the input power, ℏ is the reduced Planck 

constant, C  and λ are the velocity and the wavelength of the light respectively. 

The EQE is defined as the ratio of the number of charge carriers collected by the solar 

cell to the number of photons shining on the solar cell from outside sources. It is calculated from 

the ratio of extracted electrons to incident photons measured at short circuit conditions. The EQE 

is especially interesting for solar cells with active layers consisting of blends of materials with 

complementary absorption spectra. In this case it can give insight into the contribution of charge 

generation of each of the components. In a hybrid solar cell operation, EQE is determined by five 

factors; each factor has a quantity of an associated efficiency [38]. Also, this relationship can be 

expressed as, 

   �Þ� =  � . ���� . ���� . �� . ��                                        (2.52) 

Here, ηA, ηdiff, ηdiss, ηtr and ηcc represent the light absorption efficiency, the exciton diffusion 

efficiency, the exciton dissociation efficiency, the charge transport efficiency, and the electrons-

holes collection efficiency, respectively. The parameters ηA, ηdiff, ηdiss, ηtr and ηcc describe the 
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efficiency yields of the device, which represent the most effective way of increasing the Jsc of a 

hybrid device.  

The fill factor describes the ‘squareness’ of the J–V curve. It is defined as: FF = 

Jm.Vm/Jsc.Voc. The Jm and Vm are defined as the maximum power point current density and 

voltage, respectively. Due to physical constraints on diode quality, the practical limit to fill factor 

is less than the ideal value of 1 (FF < 1). The behavior of a real diode will deviate from the ideal, 

primarily as a result of recombination occurring at the junction. For OPV and organic–inorganic 

hybrid solar cells, the ‘junction’ is the D–A interface, which is distributed throughout the entire 

photoactive layer. Deviations from the ideal case, and thus the shape of the J–V curve, can be 

quantitatively characterized by the parasitic loss mechanisms of series and shunt resistance. Zero 

series resistance (Rs = 0) is ideal, however, poor conductivity through the active layer and 

reduced charge carrier injection to the electrodes represents increased series resistance. 

Conversely, the ideal diode case demands infinite shunt resistance (Rsh = ∞). Reduction in Rsh is 

caused by imperfections within the photoactive film or current leaks at the interface between 

layers in the device [39]. 

The origin of open circuit voltage in bulk heterojunction devices is still not well 

understood. However, the open-circuit voltage (Voc) of a solar cell under light is defined as a 

voltage at which the net current in the cell is equal to zero. In a well behaving device, the current 

measured in the dark and under illumination conditions coincide for applied voltages exceeding 

the Voc. This implies that, approximately, the Voc corresponds to the net internal electric field of 

the device, which gives the flat band condition [39]. 

A great deal of research has been done on tuning the polymer solar cells with inorganic 

nanoparticles (INPs). The inorganic NPs of various sizes and configurations have been integrated 
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into organic solar cell architecture in order to fine tune and enhance the morphology, electronic 

and optical absorption of respective devices. As a result, significant enhancements in the power 

conversion were obtained. Depending on the position in the solar cell architecture, incorporation 

of NPs can be categorized into three main groups which are: (i) photoactive or hole transport 

layers, (ii) buffer layers, and (iii) between different interfaces. Table 1 summarizes the state of 

the reported electrical parameters of the polymer solar cells indicating the respective efficiency 

improvements. 

 

Table 2.1: The state of the reported electrical parameters of polymer solar cells 
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CHAPTER 3 

Experimental Methods 

3.1 Materials 

The chemical structures for the donor polymers and fullerene acceptors used throughout 

the study are shown in Figure 3.1. Regioregular P3HT Rieke “E” was purchased from Rieke 

Metals, Inc., and PC70BM was purchased from SES Research Inc., USA. They are used as-

received. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) 1.3 wt.% 

dispersion in H2O, conductive grade was purchased from Sigma-Aldrich, USA and diluted by 

adding equal volume of H2O. Indium tin oxide (ITO) coated glass slides measuring 

25x75x1.1mm (10 Ω/sq., and ITO thickness 20–100 nm) were purchased from nanocs.com, 

USA. CuO NPs in the size range of 60–100nm, ZnO NPs (12nm) and Au NPs (15nm) were 

purchased from nanocs.com, USA. Ultra-high purity, oxygen free nitrogen gas was purchased 

from Airgas, USA. Aluminum wire of 0.15mm diameter was purchased from Ted Pella, Inc. 

USA. 

 

 

 

 

 

 

 

Figure 3.1: Chemical structures of conjugated polymers 
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3.1.1 P3HT (poly 3-hexylthiophene) 

An inherent conducting polymer, P3HT is an important material due to its solubility in 

various solvents and its high electrical conductivity. This electrical conductivity occurs when 

electrons are added or removed from the conjugated π-orbitals via doping [1, 2]. The P3HT 

molecules can be coupled as head-to-head (HH) or head-to-tail (HT) manner and HT-

regioregularity improves electroconductivity, optical nonlinearity, and magnetic properties. 

Furthermore, P3HT shows photoluminescence properties based on the tunability during synthesis 

[3]. Crystallization mechanism of conjugated polymers; such as P3HT is more complex because 

of the rigidity of the polymer backbone and the presence of side chains. A precise crystallization 

mechanism for conjugated polymers has not yet been fully understood [4]. Generally, P3HT 

serves as a donor material in the polymer solar cells. 

 

3.1.2 PCBM ([6, 6]-phenyl-C71-butyric acid methyl ester) 

PCBM is widely used as the soluble electron acceptor to fabricate efficient organic 

polymer solar cells. Previous studies [5] have shown that PCBM fullerene derivative provides 

better electronics properties in the polymer solar cells due to the exciton dissociation in 

P3HT/PCBM systems. However, it has very low absorption coefficients in UV-Vis region, thus 

limiting its light harvesting efficiency [6]. PCBM is considered as a disordered material with a 

reported mobility in the 0.05-0.2 cm2 V-1 s-1 range [7]. 

 

3.1.3 PEDOT: PSS (Poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)) 

The conducting polymer, PEDOT, is a promising candidate for electrodes in electronics 

devices. PEDOT is optically transparent and highly stable in thin oxidized films, which can be 
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chemically polymerized in a poly-styrenesulfonic acid (PSS) solution to give a PEDOT:PSS 

water emulsion. PEDOT is a positively doped conjugated polymer and the counter-ions of 

sulfonate anionic groups of PSS are used to balance the doping charges [8, 9]. Many studies have 

been instigated to increase the conductivity of PEDOT:PSS by introducing doping materials; 

however, the origin of the conductivity increment by those secondary dopants is still unclear. 

 

3.1.4 Copper oxide, Zinc Oxide and Gold nanoparticles 

Copper oxide, Zinc oxide, and gold are attractive candidates for solar cells fabrication 

due to their unique electronics, optical, and morphological properties. These properties will be 

discussed in the future chapters with more details. Considering the above mentioned properties, 

nanoparticles of these materials are used to improve the optoelectronic and morphological 

properties in the polymer semiconductors. In this study, commercially available CuO, ZnO and 

Au nanoparticles with a purity of 99.95+% (higher than 99.95%) were used. The levels of 

impurities are shown in Tables 3.1 (a), 3.1 (b) and 3.1 (c); respectively. 

 

Table 3.1: Impurity level in the nanoparticle samples in ppm: (a) CuO NPs, (b) ZnO NPs, and (c) 

Au NPs 
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3.2 Device Fabrication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic illustration of the structure of polymer solar cells 

 

3.2.1 CuO NPs incorporated P3HT/PC70BM solar cells 

PSCs containing CuO NPs were fabricated inside a glove box in an inert atmosphere 

using nitrogen gas. The P3HT/PCBM/CuO NPs hybrid solution was prepared in a two-step 

process. The first step was to obtain the P3HT/ PC70BM blend by dissolving 10 mg of 

regioregular P3HT and 10 mg of PC70BM in 2ml chlorobenzene. The mixture was stirred at 50 

oC for 12 hours. The second step is the incorporation of CuO NPs into the blend by dispersing 

CuO NPs in 2ml of chlorobenzene and adding it to the P3HT/PCBM blend in weights leading to 
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the final weight ratios (P3HT/PCBM/CuO-NPs) of 10:10:0.2, 10:10:0.4, 10:10:0.6, 10:10:0.8, 

and 10:10:1 mg, respectively. 

A schematic illustration of the structure of the photovoltaic devices which are fabricated 

for this study is shown in Figure 3.2 (a). The devices were fabricated in a glove box in nitrogen 

atmosphere by depositing layers of the materials on a 1mm glass substrate. The transparent 

electrode ITO (Merck) was ultrasonically cleaned using a series of solvents like 

ammonia/hydrogen peroxide/ deionized water mixture, methanol, and isopropyl alcohol. The 

PEDOT/PSS layer with a thickness of 40 nm was spin coated at 4000 rpm on the substrate and 

then baked at 120 oC for 15 min. This serves as a thin hole-transport layer. Once the sample 

cooled to room temperature, the hybrid solution containing P3HT/ PC70BM/CuO NPs was 

deposited by spin-coating at 800 rpm for 1 min, which leads to a film thickness of about 100–150 

nm. The purpose of this layer is to serve as the active layer. The upper cathode layer with a 

thickness of approximately 100 nm was formed by thermally evaporating aluminum under high 

vacuum. The final device had an area of 0.15 cm2. 

To study the annealing effect on the CuO NPs incorporated P3HT/PC70BM thin film, all 

the devices were annealed at 150º C for 30 minutes inside a vacuum furnace immediately after 

Al electrode deposition. 

 

3.2.2 CuO and ZnO NPs incorporated P3HT/PC70BM solar cells  

In order to fabricate and characterize the devices, similar materials and procedures, 

explained in section 3.2.1 will be used. Additionally, Different amounts of ZnO nanoparticles 

(12 nm diameter) were dispersed in pure ethanol leading to four solutions with concentrations of 

10, 20, 30, and 40 mg ml-1 of NPs. 
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Fabrication of the P3HT/PCBM/CuO/ZnO NPs hybrid device is a two-step process. In 

the first step, a thin film of ZnO NPs was assembled as a buffer layer on the CuO NPs 

incorporated P3HT/PC70BM active layer as shown in Figure 3.2(b). A 40 nm-thick PEDOT/PSS 

layer, which serves as a thin hole-transport layer, was spun coated at a rotational velocity of 4000 

rpm, followed by heating at 120°C for 20 minutes in air. When the temperature of the samples 

reached the ambient temperature, the blends with P3HT:PC70BM: CuO NPs and ZnO solution 

were spun coated for two minutes at 1000 rpm and 2000 rpm; respectively. In this study, five 

different devices (reference cell, 10, 20, 30 and 40 mg ml-1 ZnO NPs in the buffer layer) were 

fabricated. These samples are denoted as A, B, C, D and E; respectively. The active layers 

measured 120 nm in average thickness and 0.12 cm2 in surface area. The ZnO film thickness 

obtained was approximately 60 nm. Annealing was performed on all devices, after Al electrode 

deposition, inside an inert oven at 150oC, 200oC and 250°C for 30 minutes.  After fabricating the 

device, to investigate the electrical properties current density- voltage (J–V) characteristics and 

EQE measurements will be obtained.  

In the second step, the ZnO NPs along with CuO NPs were incorporated in the 

P3HT/PC70BM active layer while remaining ZnO NPs buffer layer in the device as shown in 

figure 3.2 (c). By this experiment, it is expected to understand the effect of ZnO NPs on PCE as 

electron acceptors in the CuO NPs incorporated P3HT/PC70BM active layer. Similar to the first 

step, the effect of CuO and ZnO NPs in the active layer will be studied by current voltage (J–V) 

characteristics, EQE measurements, UV–visible analysis and EDX mapping. The surface 

roughness measurements of the CuO and ZnO NPs incorporated active layer will be obtained by 

Atomic Force Microscope (AFM). 
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3.2.3 Au/PEDOT: PSS-P3HT/PCBM/CuO solar cells 

In this experiment, Au Nanoparticles (18 nm diameter) will be purchased from online 

(nanocs.com).  Different amounts of Au NPs will be added to 10 ml of PEDOT: PSS aqueous 

solution, leading to six PEDOT: PSS solutions with 0, 0.02, 0.06, 0.10, 0.14, and 0.18 mg of 

NPs; respectively. The device fabrication procedure and other materials will be the same as in 

section 3.2.2. The schematic illustration of the expected device is shown in Figure 3.5.  

 

3.3 Characterization 

The electrical properties of devices in each composition were characterized under 

ambient conditions without any encapsulation. The samples were placed under a UV solar 

simulator lamp (xenon lamp, Oriel Instruments) that was equipped with AM 1.5G filter. The 

output intensity of the lamp was adjusted to 100 mW/cm2 using a silicon photodiode (LI-200 

pyranometer). The current density–voltage (J–V) measurements were carried out using a source 

meter (Keithley 2400). The PV parameters, open circuit voltage (Voc), short circuit current (Jsc), 

fill factor (FF), EQE, and PCE, were measured in devices with and without CuO NPs that were 

made under the same conditions. 

The EQE was measured by placing a quantum efficiency measurement kit (New port, 

serial number 425) inside the solar simulator. A 300W Xenon arc lamp was used as a light 

source with a Merlin monochromator to provide throughput to the cells under test. The software 

supplied with the kit generates an EQE spectrum against a broad wavelength, the peak value of 

the spectrum is considered in the discussion. The optical properties of the cells with and without 

CuO NPs were determined using a UV–Vis spectrophotometer (PerkinElmer LAMBDA 650 
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spectrophotometer). The surface structures of the CuO NPs layers were analyzed using a 

scanning electron microscope (FEG-SEM Hitachi S-4800). 

The crystallinity of the films was studied by XRD (Cu K-source) under 40 kV and 40mA 

tube current. The X-ray profile was recorded from 4deg to 7deg with a rate of 0.2 deg/min. DSC 

measurements were collected using TA instruments Q2000 with heating rate of 5 oC/min and a 

sample weight of 5–10 mg. Surface topographical analysis was conducted using Agilent 5420 

Atomic Force Microscope (AFM), and surface roughness was measured using “Pico Image 

Basics” and GWYDDION softwares in ACAFM noncontact mode with an I-gain of 8, set point 

of 1.84, and a scan size of 2x2 μm. 
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CHAPTER 4 

Objective 1: Enhancement of Exciton Generation and Morphology 

of Polymer Solar Cells by CuO NPs 

 

4.1 Introduction 

Copper oxide is one of the earliest semiconductor materials investigated for solar cells and it 

is environmentally friendly, nontoxic and highly abundant. Copper oxide has two stable forms, 

which are Cu2O (Cuprous Oxide) and CuO (Cupric Oxide). In the 1970th decade, Cu2O attracted 

huge attention and the interest on Cu2O decreased within ten years. Rai [1, 2] reported the 

developments achieved during that period. According to his conclusions and suggestions, the 

reasons for the decline in the interest in copper oxide based solar cells are linked to a few 

essential issues: 

1. Poor performance associated with using bulk copper oxide thin films. Higher 

performances could have been obtained if nanostructured thin films were feasible. 

2. Control of the conductivity of the p-type layer by doping. Nowadays, this has 

been solved by nitrogen doping. 

3. Schottky barrier solar cells have copper-rich or oxygen deficient surfaces that 

limit the performance and will always suffer from this problem.  

Overall, all previous efforts were attempted using bulk copper oxide thin films. To fabricate 

organic/inorganic hybrid solar cells, CuO nanomaterials are added in the polymer blends. This is 

an emerging field in which different research groups are using different nanomaterials.  

CuO form in the tenorite mineral and it has monoclinic crystal structure with lattice parameters 

as the following: a = 4.6837 ˚A, b = 3.4226 ˚A, c = 5.1288 ˚A, â =99.548, ã and ¿ = 90o.  

Crystallographic properties and crystal structure of CuO are shown in Figure 4.1 [2].  



www.manaraa.com

  

 52  

 

 

 

 

 

 

 

Figure 4.1: Structure of CuO crystal shown by four unit cells [2] 

 

CuO is also considered to be an intrinsically p-type semiconductor due to copper 

vacancies acting as acceptors for the hole conduction. The band gap energy of CuO is 1.5 eV, 

which is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar 

spectral absorption [3]. Using density functional theory (DFT) calculations, B. K. Meyer et al [2] 

reported the values of the electronic bands of CuO. Figures 4.2 (a) and 4.2 (b) 5 show the band 

structure and density of states of the CuO compound; respectively. The calculated band gap (Eg= 

1.25 eV) is in accord with experimentally reported band gap value in the range from 1.0 to 1.9 

eV. The energy bands calculation was based on a strong hybridization between Cu 3d and O 2p 

states and the conduction band proximity of the Fermi level is formed mainly by the Cu 3d (Cu 

3,Õ3mä3 ↓ states) [4]. 

Semiconductor materials can contain some amount of impurities which affect the lattice 

parameter of the crystal. A change in lattice parameter creates a strain on the crystal structure. 

However, the changes in the lattice parameters are generally negligible.  The impurity level of 
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the CuO NPs is shown in Table 3.1 (a). On the other hand, incorporation of dopant impurities 

affects the lattice parameters in two distinct ways.  

 

 

Figure 4.2: Calculated band structures and density of states (DOS) of CuO [2] 

 

First effect occurs with a size effect when an impurity atom with different size replaces an atom 

within the crystal structure. The second is an electronic effect which can change the potentials. 

As an example, donors inject the electrons to the conduction band by n-type doping. The energy 

of the system can be reduced due to a decrease of the conduction-band minimum. This type of 

position shift of the conduction band occurs with volume change of the crystal. The deformation 

potential effect can be calculated by minimization of the sum of the elastic energy. Using bulk 

modulus of material B and a hydrostatic deformation @ = ∆A A⁄ , the elastic energy can be written 

by [5];  

            �0 = æ
4 k@4             (4.1) 

The corresponding volume change (ΔV/V =3ϵ) leads to a shift in the conduction band and the 

conduction band shift can be written as [5]: 
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     ∆�� = A�3@                                                               (4.2) 

Where, ac is the ‘‘absolute’’ deformation potential for the conduction - band minimum. 

Substituting n (electron concentration), the energy in the conduction band is: 

     �� = ZA�3@                                                               (4.3) 

Using equations 4.1 and 4.2; 

@ = ∆Ô
Ô = − Ô]Lç Z = â0Z                                                  (4.4) 

where â0  indicates the deformation-potential effect for electrons. 

     â0 = − Ô]Lç                                                                  (4.5) 

A similar effect can be observed for holes in the valence band. 

Therefore, âo (deformation-potential effect for holes) can be obtained as: 

       âo = ÔpLç                                                                    (4.6) 

where p is the hole concentration and A� is the absolute deformation potential for the valence-

band maximum. The positive sign of â0 indicates that adding electrons in the conduction band 

results in an expansion of the lattice. Similarly, the positive sign of âo indicates that adding holes 

in the valance band results in an expansion of the lattice [5].  

The P3HT and PC70BM are considered as an ideal donor-acceptor pair for organic solar 

cells due to their unique properties such as; ease of processing, possible recyclability, low cost, 

scalability, and applicability as sustainable materials. However, many critical issues in these 

materials remain unresolved, such as a viable PCE due to limited optical absorption. On the other 

hand, inorganic semiconductors such as CuO possess better electronic properties, such as 

extremely high optical absorption, high charge mobility, and better thermal stability. The 

nanoparticles of these inorganic semiconductors exhibit even better electronic, optical, 

photoconducting, and luminescent properties [6]. In order to take advantages of both materials, 
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nanoparticles of inorganic semiconductors (CuO NPs) are combined with conducting polymers 

(P3HT/PC70BM) in hybrid photovoltaic-cell materials, where the combined absorption bands of 

both materials can yield better sun energy harvest [7]. A schematic illustration of the structure of 

the photovoltaic devices which are fabricated for this study is shown in Figure 3.2 (a). The 

fabrication and characterization methods are described in sections 3.2.1 and 3.3 respectively. 

 

4.2 Results and Discussion 

4.2.1 Performance Characteristics 

The performance of the devices containing CuO NPs improved in comparison to the 

reference devices; this can be attributed to the enhanced light absorption of the polymer films 

with CuO NPs. The short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), 

and PCE, which is defined as the ratio of the products of Voc, Jsc, and FF to the total incident 

power density  of all the cells are listed in Table 4.1. 

 

Table 4.1: Performance parameters of P3HT/PCBM/CuO-NPs hybrid solar cells 

 

 

 

 

 

 

 

After incorporating CuO NPs into P3HT:PC70BM layer, Voc did not seem to change 

significantly, however, Jsc increased from 5.234 to 6.484 mA/cm2 and the FF increased from 
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61.15% to 68.0% which is 11.2% improvement in comparison to the cells without CuO NPs. 

Though the FF increases steadily in all the cells, the Voc and Jsc show a sinusoidal behavior, 

increasing with the weight of CuO NPs upto a maximum and then decreasing beyond a certain 

(0.6 mg) composition. As a result, the PCE follows the same trend, increasing from 2.10% to 

2.96% and then decreasing with subsequent increase in the amounts of CuO in the solar cell. In 

spite of this behavior, the increase in PCE translates to a 40.7% enhancement in the cell 

containing 0.6 mg of CuO NPs in comparison to the reference cell.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Current Density-Voltage characteristics of P3HT/PCBM/CuO-NPs hybrid solar cells 

 

The PCE of the PSCs containing CuO NPs shows a higher PCE compared to some of organic 

hybrid solar cells reported in the literature. For instance, the SiNW-19 nm Ag NPs based hybrid 

solar cells had a PCE of 2.81% and the cells based on ZnO had a PCE of 2.37%, this translates to 

an increase in the PCE of the CuO based solar cells by 5.3% and 24.9%, respectively. The 
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current density–voltage (J–V) characteristics of the hybrid solar cells containing CuO NPs are 

compared to the reference cell in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: External quantum efficiency of P3HT/PCBM/CuO-NPs hybrid solar cells 

 

According to Equation 2.51, the Jsc is linearly correlated to the EQE. Both EQE and UV–

Vis absorption measurements of the solar cells show that the Jsc increases with increasing the 

amount of CuO NPs. It is clear from the UV–Vis absorption spectra that the absorption of 

P3HT:PC70BM cell in the region of 420–600 nm is enhanced after the incorporation of CuO 

NPs. The EQE is defined as the ratio of the number of charge carriers collected by the solar cell 

to the number of photons shining on the solar cell from outside sources. EQE measurements for 

solar cells with various amounts of CuO NPs are shown in Figure 4.4. The EQE increased over a 

broad wavelength ranging from 300 to 600 nm and the maximum EQE values for CuO NPs, with 
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1.0 mg, 0.8 mg, 0.6 mg, 0.4 mg, and 0.2 mg devices were 62, 58, 54, 53, and 46%, respectively, 

while that of the reference cell (no CuO NPs) was 42%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Optical absorption spectra of P3HT/PCBM/CuO-NPs hybrid solar cell 

 

As described in the chapter 2, the EQE depends on five major efficiency steps which 

govern by associated efficiencies as shown in Equation 2.52. The photon absorption (μA) 

efficiency describes the photon absorption capacity of the thin layers. The optical absorption 

coefficient, band gap, and the thickness of the photoactive layer are the major determinants of 

photon absorption yield. This serves as the most desired approach for increasing the Jsc of a 

hybrid device [8]. In hybrid solar cells, absorption may be enhanced by incorporating inorganic 

semiconductor nanoparticles. This implies that the electronic composition of the inorganic 

material will influence the Jsc of the device as well. 
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Figure 4.5 shows the spectral diagram for optical absorption of CuO nanoparticle 

incorporated P3HT/PCBM photovoltaic cells. Absorption of a photon with energy greater than 

the Eg value (1.99 eV) for P3HT generates an exciton which is diffused to the P3HT/PCBM 

interface. To investigate the optical absorption in CuO NPs, the absorption spectrum of the CuO 

NPs sample was obtained as shown in Figure 4.6. The figure depicts absorption peaks intensity 

at 2.9 over the wavelength range of 300nm - 400nm for the pure CuO NPs samples. The Eg value 

of the CuO NPs is calculated using Tuac formula [9]; 

(ãℎ|)� = k�ℎ| − ���                                                  (4.7) 

where ℎ| is the energy of incident photons in eV and m = 1/2 for indirect and 2 for direct 

allowed transitions, B is a constant related to the material, h is Plank's constant, ν is the 

frequency of the photon, Eg is the optical band gap in eV. Assuming direct transitions between 

the valence band and the conduction band of CuO NPs, the Eg can be determined by a plot of 

(ãℎ|)4 versus (ℎ|) at ã = 0. The estimated Eg value for CuO NPs is approximately 2.14 eV. 

Also, the Eg value of the P3HT/PCBM blend was estimated using the same method and it was 

found to be 2.71 eV. After incorporating CuO NPs into the P3HT/PCBM blend, the Eg value was 

2.64 eV. However, the Eg value did not change significantly with changing concentrations of 

CuO NPs in the blend. 
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Figure 4.6: The absorption spectra of these CuO NPs 

 

The parameter μdiff represents the ability of an exciton to diffuse to a donor/acceptor 

(D/A) interface through the polymer without recombination. The exciton diffusion length in 

conjugated polymers generally should be around 10–20 nm [10]. Diffusion of excitons to the 

D/A interface is a prerequisite for generation of separated negative and positive charges. Since 

excitons are neutral species, electric fields have no influence on their motion and they diffuse by 

way of random hops steered by the concentration gradient. Excitons which fail to reach the D/A 

interface are lost for the energy conversion and do not contribute to the photocurrent [11]. 

The improvement in efficiency of this CuO NPs incorporated system can be attributed to 

the enhanced charge collection efficiency which results from the availability of better pathways 

for charge transport and reducing the need of inter-particle hops for charge carriers. Existence of 

a continuous percolated nanomorphology in this system with optimum amount of CuO NPs 

provides a better interconnected network, in which the donor and acceptor materials are 
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interdigitated at the nanometer scale. This structure facilitates efficient, direct transport pathways 

for both electrons and holes thereby averting the need for inter-nanoparticle hops.  

 

 

 

 

 

 

 

Figure 4.7: EDX mapping showing the distribution of elemental copper in the P3HT/PCBM 

active layer of PSCs containing: (a) 0.2 mg, (b) 0.4 mg, (c) 0.6 mg, (d) 0.8 mg and (e) 1 mg CuO 

NPs 
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Further, it permits the photo-induced charges to be in separated state for an extended lifetime and 

diminishes the possibility of recombination of charges. As a result, this hybrid system improves 

both the quantum efficiency and the FF, leading to a higher PCE. 

However, the PCE of the solar cells seem to increase drastically as the amount of CuO 

NPs are increased in the active layer up to 0.6 mg and then drop slightly as the amount of CuO 

NPs are increased further. This may indicate some hindrance to the optical absorption in the 

active layer either due to the increasing thickness as the amount of CuO NPs are increased 

further or due to agglomeration of the CuO NPs in the active layer at higher concentrations. 

Figure 4.7 shows the EDX mapping of elemental copper in the active layer of the solar cells. 

This can be used to indicate the distribution of CuO NPs in the active layer. Higher 

agglomeration can be seen in Figures 4.7d and 4.7e, which correspond to the cells containing 0.8 

and 1 mg of CuO NPs; respectively. 

The volume fraction of the CuO NPs in the EDX mapping was calculated using IMAGEJ 

software. IMAGEJ is a JAVA-based image processing program which can be used to solve many 

image processing and analysis problems. The converted images with the optimized threshold for 

particle detection are shown in Figure 4.8. The calculated volume fractions of the CuO NPs in 

the EDX mappings are 29.99, 36.04, 43.81, 53.7, and 66.52 for the thin films with 0.2, 0.4, 0.6, 

0.8, and 1.0mg of NPs; respectively. 

The next parameter is the charge transport efficiency (μtr), which describes the efficiency of 

charge carrier transport throughout the device. Charge transportation along the device determines 

the current density and hence affects the final performance [12]. Charge transport progresses 

through hopping of charges between energy states in organic materials and recombination spots 

and traps in the photoactive layer can impede this process. The continuous network provided by 
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the CuO NPs can greatly reduce the need for charge carriers to hop during their transportation to 

the electrodes, so this hybrid system shows a better performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Converted EDX images with the optimized threshold 

 

The charge collection efficiency (μcc) at electrodes indicates the potential of charge 

carriers to be injected into the electrodes from the photoactive layer. Electronic composition of 

the device plays a key role in accomplishing this step. Successful injection of electrons into the 

cathode depends on the magnitude of the conduction band energy level of the acceptor material, 

compared to the vacuum level, being lower than the work function of the donor material [13]. 
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Similarly, for successful injection of holes into the anode, the magnitude of the conduction band 

energy level of the acceptor material, compared to the vacuum level, should be higher than the 

work function of the transparent anode. In this study, we used PEDOT:PSS layer as the anode 

and aluminum as the cathode material. Both these materials satisfied the above requirements.  

A schematic energy level diagram of the P3HT/CuO/PCBM active layer is shown in 

Figure 4.9(a). The band structure of P3HT and PCBM [14] makes them an ideal donor and 

acceptor pair. In comparison to P3HT, the energy levels of the conduction and valence bands of 

CuO and the lowest unoccupied molecular orbital and highest occupied molecular orbital 

(HOMO) of PCBM are such that CuO and PCBM can form a semiconductor heterojunction; this 

makes them a suitable donor and acceptor pair. The electrons thus generated can transfer from 

the conduction band of the CuO to the PCBM and the separated holes can in turn transfer from 

the valence band of the CuO to the ITO through the structure. 

 

 

 

 

 

 

 

 

 

Figure 4.9: (a) Schematic band structure of the P3HT/PCBM/CuO NP active layer, (b) SEM 

image of the polymer solar cell 
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A SEM micrograph of the fabricated solar cell showing the spin coated PEDOT:PSS and 

the CuO NPs/P3HT:PCBM layers is shown in Figure 4.9(b). A thin layer (40 nm) of 

PEDOT:PSS layer is required to facilitate the transfer of the carriers to the ITO anode. The 

thickness of the P3HT/PCBM active layer was restricted to 100–150 nm to avoid the 

recombination of charges. 

 

 4.2.2 Morphology and Surface Characteristics 

The XRD patterns of CuO NPs are shown in Figure 4.10. Different peaks were observed 

at (2θ) = 32.49° (110), 35.52° (002), 38.72° ( 1Û11), 48.76° ( 2Û02), 53.46° (020), 58.32° (202), 

61.51° ( 1Û13), 66.23° (022) and 68.07° (220) corresponding to different planes of monoclinic 

phase of CuO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: XRD pattern of CuO NPs sample 
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It is clear that the major peaks located at 2θ = 35.52° and 38.72° are the characteristic 

peaks for the pure monoclinic phase of CuO NPs. The sharp and narrow diffraction peaks 

indicate that the material has good crystallinity and no other impurities were detected [15].  

The effect of the CuO NPs on the crystallinity of P3HT was studied by XRD and DSC. 

Figure 4.11 shows the XRD spectrum which indicates an improvement in the crystallinity (peak 

intensity and width) of the hybrid solar cells containing CuO NPs. This may be due to the fact 

that a small amount of the P3HT chains escape from the amorphous region and self-organize 

forming crystalline phases in the blend. The heterogeneous nucleation occurs on insoluble 

impurity particles. Considering Equation 2.48, a reduction in the ¿∗ (specific surface free energy 

factor) would facilitate nucleation at lower temperature values. Therefore, the impurities improve 

the nucleation rate in the blend. In the P3HT/PCBM blend, CuO NPs act as impurities, thus 

improving the nucleation rate of the P3HT molecules. The percent crystallinity was determined 

by the ratio of the intensities of the observed and the background peaks [16]. 

                              % Ð7é êAëëÇZÇêé = ì³�0��0�
çÔ�E���y-� 

                                                           = (ÎÔÕ.mÎ�-.)�-�0-���ä �� �o0 �0ÔE(ÎÔÕ.mÎ�-.)�-�0-���ä �� �o0 ³Ô�E���y-�                            (4.8) 

 

The sample without any CuO NPs was considered as the background, and the minimum and 

maximum peak intensity values in Equation 4.8 represent the peak minima and the maxima 

values. 

The effect of CuO NPs on the crystallinity of P3HT:PC70BM thin films were further 

analyzed by DSC to corroborate the XRD results. 
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Figure 4.11: XRD spectra for CuO NPs incorporated P3HT/PCBM thin films 

 

The percentage crystallinity (Xc) of P3HT in a blend of P3HT:PC70BM:CuO NPs was calculated 

using the DSC melting and crystallization enthalpies using the following equation: 

                                %Ð7é êAëëÇZÇêé (í�) = V∆ØWm∆Ø]∆Ø X.100                                                   (4.9) 

where ΔHm is the enthalpy of melting (in J/g of sample) of semicrystalline polymer in a blend, 

ΔHc is the enthalpy of crystallization, and ΔH is the enthalpy of melting of 100% crystalline 

polymer (ΔH of P3HT = 99 J/g) [17]. 

The crystallinity values determined by both XRD and DSC (Figure 4.12) show that the 

percent crystallinity, in general, increases gradually as the amount of CuO NPs increases in the 

P3HT:PC70BM polymer blend. However, the crystallinity values determined by XRD were 

higher and ranged from 1 to 3.7% in comparison to the values obtained from DSC using 
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Equation 4.9 and ranged from 0.56 to 1.29% in PSCs containing 0–1 mg of CuO NPs, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Crystallinity of PSC’s determined by XRD and DSC-Eq: (4.9) 

 

The difference in the values observed may be attributed to the difference in the amount of 

sample analyzed. For example, in XRD, a larger portion of the sample or the entire 

P3HT/PC70BM layer containing CuO NPs can be analyzed where as in DSC, the total sample 

size is restricted to 10 mg and this sample size may not contain an ample amount of the polymer 

active layer and the CuO NPs to give a better resolution in comparison to XRD. 

On the other hand, instead of using Equation 4.9, if one was to use another commonly 

used method, Equation 4.10 to determine the percent crystallinity of a polymer, which is defined 

as the ratio of the enthalpy of fusion (ΔHm) of the polymer sample to the enthalpy of fusion of the 



www.manaraa.com

  

 69  

100% crystalline phase of the polymer (∆
�� ), the percent crystallinity values will change as this 

equation does not consider the heat required for crystallization of the samples [18].  

                                  %Ð7é êAëëÇZÇêé(í�) = V∆ØW∆ØW� X . 100                                                     (4.10) 

From Figure 4.13, it is clearly evident that the crystallinity values determined by DSC, using 

Equation 4.10 are now higher and are in the range of 5.81–6.06% as they represent only the heat 

required to melt the crystalline domains formed by self-organization [19] in the P3HT:PC70BM 

blend as the CuO NPs are added. One can also observe that the crystallinity values now show a 

sinusoidal behavior instead of a steady increase as the amount of CuO NPs increase in the 

polymer active layers. The former argument on the sample size does not seem to support this 

new trend as the change in crystallinity now seems to be independent of the sample size and 

seems to depend on other parameters which may be related to the ability of the CuO NPs to 

support or hinder the formation of crystalline domains. One can speculate that this may be due to 

the dispersion of CuO NPs in the polymer blend.  

A sudden drop in the initial crystallinity followed by a steep increase, as the CuO NPs are 

increased, may be attributed to the dispersion of the particles within the active layer. However, 

increasing the amounts of NPs beyond a certain composition seems to lower the crystallinity; this 

may be due to agglomeration of the CuO NPs hindering the crystalline phase formation.  

Though this behavior is different from the one observed by XRD, it seems to resemble 

the performance parameters shown in Table 4.1. The highest PCE and crystallinity values are 

observed in samples containing 0.6 mg CuO NPs (Figure 4.14). From this observation, one can 

say that the optimum composition is 0.6 mg of CuO NPs in the active layer of the PSC. In 

general, the increase in crystallinity observed by XRD or DSC may be attributed to an 

improvement in nanoscale phase-separation of the P3HT/PCBM [20]. 
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Figure 4.13: Crystallinity of PSC’s determined by XRD and DSC-Eq: (4.10) 

 

The P3HT crystallite domains adjust the degree of phase separation leading to a decrease 

in exciton diffusion length. Also there could be a decrease in the spaces between P3HT chains, 

thus improving the charge transport inside P3HT domains [21] causing the PCE to decrease 

beyond the optimum amount of NPs in the blend. This could be the main reason that the PCE 

does not follow the same trend of EQE and optical absorption after 0.6 mg of CuO NPs in the 

active layer. 

The exciton dissociation (μdiss) is a process in which the electron and hole bound within 

the exciton are released by a driving force generated with the energy offset formed at the D–A 

interfaces. This energy offset must be larger than the excitonic binding energy in the material to 

facilitate charge transfer [22]. Exciton dissociation takes place only at the boundaries between 

the inorganic semiconductor and the conjugated polymer hence, broader distribution of the 
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interface throughout the active layer plays a major role in improving efficiency of the solar cell 

[23]. Incorporation of CuO NPs could enhance the interfacial distribution by increasing the 

surface area which can lead to efficient dissociation of excitons into holes and electrons. Surface 

analysis by AFM is thus useful to understand this phenomenon. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Effect of CuO NPs on the crystallinity and PCE of the PSCs 

 

AFM surface images of P3HT:PC70BM films with different amounts of CuO NPs are 

shown in Figure 4.15. The surface morphology of the P3HT/PCBM-CuO NPs layers shows 

higher surface peaks and an obvious increase in surface roughness. The root-mean-square 

roughness (σrms) value increased from 0.11 nm in the thin film without CuO NPs up to 0.47 nm 
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in the thin film with 1mg of CuO NPs. The optimum cell with 0.6mg of CuO NPs shows a 

surface roughness value of 0.31 nm.  

 

Figure 4.15: AFM images for  P3HT/PCBM layers with (a) No CuO NPs, (b) 0.2mg CuO NPs, 

(c) 0.4mg CuO NPs, (d) 0.6mg CuO NPs, (e) 0.8mg CuO NPs, (f) 1mg CuO NPs 

 

This can be the result of increased nanoscaled phase separation between the crystalline 

P3HT and the PC70BM acceptor. However, the surface roughness values of the cells are very 

small indicating highly homogeneous films. Increase in surface roughness allows more space for 

P3HT crystallites to form, thereby increasing crystallinity. Furthermore, increased surface 

roughness leads to an increase in interfacial contact area between the PEDOT:PSS and 

P3HT/PCBM-CuO NPs layer, allowing more efficient hole collection at the anode and thereby 

improving Jsc and FF. 

The driving force required for exciton dissociation is determined by the energy gap 

between the ionization potential of the donor and the electronic affinity of the acceptor which 

have a linear relationship with the Voc [24]. Therefore, we find a direct correlation between the 

driving force and Voc. Since the addition of CuO NPs has not significantly changed the value of 
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Voc for the PSC, the CuO NPs may not change the active layer P3HT conjugation length. As a 

result, the HOMO energy level of P3HT remains unchanged therefore; CuO NPs do not seem to 

contribute to enhance the driving force required to increase the exciton dissociation. 

 

4.3 Conclusions 

CuO NPs were added to P3HT/PC70BM polymer blends in order to improve the PCE. It 

was shown that the incorporation of CuO nanoparticles at an optimum level of 0.6 mg yields 

40.7% improvement in PCE due to enhancement of the five factors affecting the EQE: (i) photo-

absorption increased with elevated exciton generation rate; (ii) the amplification of exciton 

diffusion coefficient due to enhanced hole and electron mobility; (iii) exciton dissociation ability 

increased by enhancement of interfacial distribution; (iv) the charge transport process was 

facilitated by providing better pathways in a continuous internal structure, and (v) the carrier 

collection which depends on electronic properties of electrode materials did not change to a 

significant extent with the addition of CuO NPs. 
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CHAPTER 5 

 

Objective 2: Enhancement of Exciton Transportation and Carrier 

Diffusion in CuO Incorporated Polymer Solar Cells by Thermal 

Annealing 

 
5.1 Introduction 

Bulk heterojunction (BHJ) PSCs benefit from a homogeneous donor-acceptor (D-A) 

contact interface compared to their inorganic counterpart. A homogenous D-A interface offers a 

longer free path for charge carriers, resulting in a longer diffusional pathway and a larger 

coulomb interaction between electrons and holes. This is triggered by the low dielectric constant 

of organic semiconductors. Among various conventional donor-acceptor structures, poly(3-

hexylthiophene)/[6,6]-phenyl-C70-butyric acid methyl ester (P3HT/PCBM) mixture is highly 

encouraging due to the unique properties of P3HT [1-3].  P3HT molecules possess superior 

charge transport ability (1/104 – 1/10 cm2/V s) and crystallinity in bulk state as well as expanded 

photo-absorption and environmental stability. Several researchers have attempted enhancing the 

PCE in polymer based solar cells by various approaches.  

 

 

 

 

 

 

Figure 5.1: Schematic illustration of internal structure of thin films 
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These include the design of novel device structures, producing  materials with short 

energy gap, morphological refining of polymer thin films, upgrading photo generation ability, 

and creation of higher electron-hole mobility by adjusting D-A contact surface [4–7]. To enhance 

the crystallinity and surface morphology in spun-casted polymer films, several strategies such as 

thermal/ solvent annealing [8–10] and using additives [11] have been used successfully.  

The Voc and Jsc mainly depend on the optimum morphology of the polymer film as it 

describes the energy level, band gap and the hole mobility of the conjugated polymer. The 

optimum morphology of P3HT/PCBM films describes two main features: 1) the molecular 

ordering within the donor or acceptor phase, which affects the  photon absorption and carrier 

mobility; and 2) scale of phase separation between the donor and the acceptor, which can directly 

influence the exciton dissociation and charge transport and/or collection processes[12, 13]. 

Compared to inorganic solar cells, PSCs usually have insufficient light absorption due to the thin 

active layer which is restricted by the short exciton diffusion length and low carrier mobility. 

Optimization of the morphology by various treatments, such as thermal annealing which can lead 

to molecular rearrangement of the spin-coated films, helps to overcome these drawbacks and 

improves the power conversion efficiency. This in turn will increase light harvesting of 

P3HT:PCBM film and improve PCE. Motaung et al. [14] obtained 1.03% maximum PCE for 

ZnO incorporated P3HT: PCBM devices which were heat treated up to 140° C. Kang et al. [15] 

reported 3.86% PCE, 0.68V open-circuit voltage (Voc) and 64% fill factor (FF) through post-

annealing at 170 °C. To improve the photon harvesting in PSCs, the incorporation of inorganic 

nanoparticles (INPs) has been extensively investigated. Nanoparticles (NPs); such as ZnO, TiOx, 

and CdSe can be successfully incorporated into P3HT: PCBM layers as electron acceptors [16]; 

whereas Au and Ag NPs [17] have been used to enhance the photon absorbance. 
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However, no conclusive work has been conducted to optimize the morphology of both 

metal oxides such as CuO nanoparticles incorporated PCBM/ P3HT thin films through annealing 

treatment. In this work, X-ray diffraction (XRD) and ultraviolet–visible spectroscopy (UV–vis) 

are used to identify the evolution of the structure morphology and optical properties of CuO 

NPs/P3HT/PCBM with thermal annealing. A schematic illustration of the structure of the 

photovoltaic devices which are fabricated for this study is shown in Figure 3.2 (a). The 

fabrication and characterization methods are described in sections 3.2.1 and 3.3 respectively. 

 

5.2 Results and Discussion 

5.2.1 Morphological Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: XRD spectra for CuO NPs incorporated P3HT/PCBM thin films after annealing 
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The XRD spectra were recorded from 4º to 7º at a rate of 0.2º per min by using automatic 

slits. Figure 5.2 shows the XRD spectra for PSC samples which were annealed for 30 min at 150º 

C in vacuum.  The annealing temperature and time interval were chosen based on the results 

reported by Algazzar et. al. that correspond to the optimum PCE of P3HT:PC70BM [18].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Diffraction peak intensity before and after annealing 

 

Annealing treatment increases the intensity and width of the diffraction peaks of hybrid 

solar cells with different amounts of CuO NPs, as shown in Figure 5.3. The increase in 

crystallinity of P3HT may be attributed to its enhanced self-organization ability due to annealing 

in the presence of CuO NPs. However, diffraction peaks relevant to the PC70BM were not 

noticeable in the XRD spectra of P3HT:PC70BM films, both with and without CuO NPs. 

Therefore, it is predicted that the addition of CuO NPs and annealing only affect the 
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crystallization of P3HT with little or no influence on the crystallization of PC70BM. It is evident 

from previous research that PCBM is not a crystalline material [19]. The samples which 

contained 0.6mg of CuO NPs exhibited the highest crystallinity among the heat-treated samples. 

Further increase in the amount of CuO NPs above 0.6mg led to a decline in crystallinity which 

may be attributed to uncontrolled phase separation, interruption in P3HT crystallization and/or 

agglomeration and insufficient dissolving of CuO nanoparticles [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Effect of CuO NPs on crystallite size (L) after thermal annealing 

 

The crystallite size (L) was calculated using the values obtained from XRD results using 

the Scherer’s equation [21], 

           ¥ (ZH) = �.æ.ß
∆3î.���ï                                                           (5.1) 



www.manaraa.com

  

 81  

Where λ is Cu K-α wavelength (0.154 nm), ∆2θ is the full width half maximum of the peak, and θ 

is half the angle at peak.   

The higher XRD peaks indicate that more P3HT crystallites have been formed; i.e. higher 

crystallinity. However, these crystallites are higher in numbers but the crystallite size has 

decreased with increased amounts of CuO NPs as shown in Figure 5.4. Crystallite size 

calculations for annealed samples show that 0.6 mg of CuO NPs samples exhibit the smallest 

crystallite size of 38.58 nm. A smaller crystallite introduces a shorter exciton diffusion path 

between P3HT backbones which helps in obtaining a higher short circuit current (Jsc) of the 

devices [22].  

The effect of annealing treatment on the crystallinity of P3HT:PC70BM thin films were 

further analyzed by Differential Scanning Calorimetry (DSC) to corroborate the XRD results.  

The percentage crystallinity (Xc) of P3HT in the P3HT:PC70BM: CuO NPs active layer was 

calculated using the DSC melting and crystallization enthalpies by the Equation 4.9. 

The crystallinity values calculated by DSC show that the percent crystallinity, in general, 

increases gradually as the amount of CuO NPs increases in the P3HT:PC70BM polymer blend, 

before annealing.  However, after annealing, the percent crystallinity has remarkably increased 

as comparatively shown in Figure 5.5. This behavior may be attributed to phase separation and 

recrystallization of P3HT as single molecules.  The percent crystallinity values of the annealed 

samples began to decline when the amount of CuO NPs is higher than 0.6mg. This may be 

attributed to agglomeration and polymer entanglement with excess amounts of CuO NPs during 

the annealing process, or to uncontrolled phase separation and interruption in P3HT 

crystallization.  
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Figure 5.5: Percent crystallinity before and after annealing 

 

The crystallization results obtained from DSC are in line with the ones obtained from XRD. Both 

of these methods showed a gradual and consistent increase in crystallinity before annealing as a 

function of CuO NPs addition. Similarly, an increase in crystallinity was observed in the samples 

after annealing; the crystallinity peaked in samples containing 0.6 mg CuO NPs. 

The AFM surface images of P3HT:PC70BM films with different amounts of CuO NPs, 

after thermal annealing, are shown in Figures 5.6. Surface topographical analysis of the polymer 

films was carried out in AC-AFM non-contact mode with an I-gain of 10, set point of 1.24 and a 

scan size of 2x2 μm. In comparison, the samples prepared with thermal annealing showed a 

relatively higher surface roughness than those without annealing as illustrated in Figure 4.15.  

The root-mean-square roughness (σrms) of the annealed samples increased from 0.41 nm in the 

thin film without CuO NPs up to 0.99 nm in the thin film with 1mg of CuO NPs. The heat treated 
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cells with the optimum composition of 0.6mg of CuO NPs exhibited a surface roughness σrms of 

0.82 nm. In low crystalline polymer blends, the roughness has been found to be linearly related 

to the crystallinity and the rate of cooling and roughness seem to influence the crystallite 

formation [23-25]. This indicates that the increase in roughness due to annealing influences the 

formation of crystallites and increases the crystallinity.  

 

 

Figure 5.6: AFM images for  annealed P3HT/PCBM layers with (a) No CuO NPs, (b) 0.2mg 

CuO NPs, (c) 0.4mg CuO NPs, (d) 0.6mg CuO NPs, (e) 0.8mg CuO NPs, (f) 1mg CuO NPs 

 

Table 5.1 summarizes the roughness values of all the samples determined by AFM. The 

roughness of the heat treated cells in general has doubled. The increase in roughness can be 

attributed to increased nano-scale phase separation between the crystalline P3HT and the 

PC70BM acceptor with thermal annealing. Furthermore; the increase in surface roughness leads 

to an increase in interfacial contact area between the PEDOT: PSS and P3HT/PCBM/CuO NPs 
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layer, allowing more efficient hole collection at the anode and thereby improving Jsc and fill 

factor (FF) of the PSCs. 

 

Table 5.1: Comparison of roughness values of the PSCs before and after annealing 

 

 

 

 

 

 

 

 

 

5.2.2 Optical and Electrical Properties 

The UV–Vis absorption spectra of the P3HT/PC70BM/CuO NPs blend films before and 

after annealing were compared to determine the effect of annealing on the optical properties of 

the PSCs. The absorption intensities clearly improved in all the cells containing CuO NPs in the 

P3HT/PC70BM thin films after annealing, as shown in Figure 5.8.  

The increase in absorption intensities is attributed to enhanced crystallinity of P3HT by 

annealing treatment, combined with improved optical absorption caused by CuO NPs in the 

polymer active layer, irrespective of thermal annealing. This was confirmed by recording the 

UV-Vis spectra of the CuO NPs thin films on a glass substrate.  
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Figure 5.8: Optical absorption intensities from UV-vis spectroscopy before and after annealing 

 

The maximum light absorption values of the CuO NPs thin films and the 

P3HT/PCBM/CuO NPs thin films before and after annealing are compared in Table 5.2. Based 

on the values shown in the table, it looks like annealing does not affect the light absorption of 

CuO NPs. However, increasing the amount of CuO NPs in the P3HT/PCBM films seems to 

improve the light absorption of the un-annealed polymer blend significantly. On the other hand, 

the light absorption of the P3HT/PCBM/CuO NPs films seems to improve significantly after 

annealing. This indicates that the increased crystallinity of the P3HT/PCBM blend after 

annealing also plays an important role in improving the light absorption in comparison to the 

CuO NPs in annealed samples. These results lead to the conclusion that both the CuO NPs and 

the morphology of the P3HT/PCBM blend play a significant role in enhancing the light 

absorption and the optical properties of the active layer before and after annealing respectively. 
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Table 5.2: Comparison of maximum light absorption intensities of the CuO NPs and the 

P3HT/PCBM/CuO NPs active layer before and after annealing 

 

 

 

 

 

 

 

 

 

The absorption spectra, shown in Figure 5.7, shows the main peaks at 450–500 nm and 

two shoulder peaks at 600 and 635 nm. According to literature, the main peak and the vibronic 

shoulders are generated by P3HT in the active layer [26].  

However, the shoulder signal was distinguishably observed with increasing amounts of 

CuO NPs in the P3HT: PCBM blend. Other researchers have shown that the first shoulder signal 

at wavelengths higher than 500 nm and second shoulder signal at 650 nm correspond to the 

absorption of extended conjugation of solid state P3HT in the layer and the inter-chain stacking 

of P3HT, respectively [27]. The photon absorption coefficient describes the photon absorption 

capacity of the thin films. The optical absorption coefficient, band gap and the thickness of the 

photoactive layer are the major determinants of photon absorption yield.  In hybrid solar cells, 

absorption was enhanced by incorporating CuO NPs and improving crystallinity of P3HT in the 
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thin film structure. This serves as the most promising approach for increasing the Jsc of a hybrid 

device [28, 29]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Optical absorption spectra after annealing 

 

The highest EQE measurements for annealed and non-annealed solar cells with various 

amounts of CuO NPs are comparatively shown in Figure 5.9. The EQE increased over a broad 

wavelength ranging from 300 to 620 nm after incorporating CuO NPs in the active layer. 

However, after annealing maximum EQE values increased in all the devices to 70, 61, 61, 57, 52 

and 49%; respectively.   

 The improvement of EQE can be attributed to the increased hole and electron polaron 

motilities, charge collection at the electrodes, and photon absorption.  The results from EQE 

concur with the results obtained from UV-Vis absorption.  It is clear that the absorption of 



www.manaraa.com

  

 88  

P3HT:PC70BM cells in the range of 420 nm to 550 nm is enhanced after annealing as well as by 

incorporating CuO NPs in the active layer.  This indicates that higher amounts of CuO NPs lead 

to more absorption and higher EQE of the cell; i.e. higher electron mobility, photo generated 

carrier injections and better J-V characteristics.  The EQE spectra and UV-vis absorption spectra 

clearly illustrate that the annealed P3HT:PC70BM thin films with CuO NPs show significant 

improvements in electrical performance     compared to the reference cells. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Effect of annealing on the EQE values of PSCs with CuO NPs 

  

 The short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor and power 

conversion efficiency (PCE) of all the cells before and after annealing are listed in Table 5.3. 

These parameters are slightly improved by annealing treatment at 150° C above the glass 

transition temperature.  According to the J-V characteristics of the devices without annealing, the 
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short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to 

increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs which accounts for a 24% 

increase. The current gain gives a rise to the power conversion efficiency (PCE) from 2.106% to 

2.963%; in addition the fill factor increases from 61.15% to 68.0% with 11.2% enhancement. 

 

Table 5.3: Performance parameters of P3HT/PCBM/CuO-NPs hybrid solar cells before and after 

annealing (B/A: before annealing, A/A: after annealing) 

 

 

However, after the annealing process, Voc decreased with increasing the amount of CuO 

NPs; whereas Jsc increased from 6.252 to 9.149 mA/cm2 with 46.3% enhancement, and FF 

remained almost the same. As a result, PCE increased from 2.804% to 3.701%, leading to a 32% 

enhancement in the cells containing 0.6 mg of CuO nanoparticles. This can be attributed to the 

increase in Jsc. Based on power conversion efficiency equation (PCE = Voc*Jsc*FF/total incident 

power density), Voc, Jsc, and FF are crucial factors in final PCE. Higher Voc, Jsc, and FF result in 

higher PCE. The PCE values obtained of the CuO NPs incorporated solar cells before and after 

annealing are shown in Figure 5.10. 



www.manaraa.com

  

 90  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: PCE of P3HT/PCBM/CuO-NPs hybrid solar cells before and after annealing 

 

As illustrated in Figure 5.10, the maximum efficiency of 2.963% was observed in 

samples containing 0.6 mg CuO before annealing. The efficiency values increased after 

annealing to 3.702% in the optimum cell which contains 0.6mg of CuO NPs. The increase in 

PCE at weight fractions of CuO NPs up to 0.6mg indicates the lowering of the number of 

recombination charges before reaching the electrode and the increase in the optical absorption by 

the thin film. At higher amounts of CuO NPs (>0.6mg), the efficiency starts to decline, which is 

an indication of charge recombining and less charge phase separation. 
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Figure 5.11: Jsc and Voc of P3HT/PCBM/CuO-NPs hybrid solar cells after annealing 

 

For the annealed devices, Voc and Jsc were measured at the intersections of the J–V curve 

with the x-axis and the y-axis; respectively, as shown in Figure 5.11. The open circuit voltage 

(Voc) is controlled by the energetic relationship between the donor and the acceptor. The energy 

difference between the highest occupied molecular orbit (HOMO) of the donor and the lowest 

unoccupied molecular orbit (LUMO) of the acceptor is known to most closely and linearly 

correlate with the Voc [29]. Therefore, controlling the energy levels is important to increase the 

power conversion efficiency [29]. The linear correlation of the Voc to the energetic gap between 

donor’s HOMO level and acceptor’s LUMO level can be shown as Equation 5.2 [30].  

                        9�� = ��,�/� = ��,� − (¥ðñò� − ¥ðñò�)                                        (5.2) 
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The annealing treatment for the CuO NPs incorporated thin films has significantly 

decreased the value of Voc for the PSCs possibly since the CuO NPs in the annealed thin films 

changed the active layer P3HT conjugation length. As a result, the HOMO energy level of P3HT 

has decreased. 

The short circuit current (Jsc) of the annealed samples has increased. This could be due to 

higher crystallinity and smaller crystallite size leading to better electron mobility. The annealing 

treatment of P3HT near the glass transition rearranges the molecular ordering of the internal 

microstructure. This leads to an increase in the extent of carrier diffusion of P3HT polymer 

across the PCBM phase, thus improving Jsc in the photovoltaic performance. The fill factor (FF) 

remained nearly the same after annealing, which indicates that the annealing treatment has a very 

small effect on FF, but it influences both the Jsc and Voc.  

 

5.3 Conclusions 

In this work, CuO NPs was added to P3HT/PC70BM polymer blend to improve the 

crystallinity of P3HT and to enhance the P3HT/PC70BM phase separation. UV-Vis and EQE 

analysis showed enhancement of self-organization ability, which led to improved P3HT 

crystallinity and intensified phase separation of P3HT/PC70BM in polymer films. EQE of the 

solar cells increased due to increased hole and electron polaron mobilities in cells with CuO NPs. 

AFM analysis showed an increase in surface roughness of the cells with CuO NPs, which is an 

indication of larger space for P3HT crystallites to form. Higher P3HT crystallinity reduces the 

amount of PCBM dissolved in the amorphous regions of P3HT, thus promoting the aggregation 

of PC70BM, which contributes to PC70BM/P3HT phase separation. Adding 0.6 mg of CuO NPs 

to the active layer resulted in forming the smallest polymer crystallites, which was nearly 38.58 
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nm after annealing at 150°C for 30 min in vacuum. The smaller crystallite size suggests a shorter 

path of the charge carriers between P3HT backbones, which increased the short circuit current 

(Jsc) and increased the open circuit voltage (Voc) in the solar cells. At the optimum annealing 

conditions of 150 ºC for 30 minutes, CuO NPs incorporated P3HT/PC70BM solar cells yielded 

32% improvement in PCE due to increased photo absorption with elevated exciton generation 

rate, enhanced hole electron mobility and charges transport due to improved crystallinity. 
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CHAPTER 6 

Objective 3: Improvement of Exciton Dissociation and Electron 

Mobility in Polymer Solar Cells Using ZnO NPs 

 

6.1 Introduction 

ZnO, as a semiconductor, has attracted much attention due to its unique properties; such 

as high electron mobility, wide and direct band gap and large exciton binding energy. Therefore, 

ZnO has been considered a promising material for optoelectronic device applications.  

 

 

Figure 6.1: (a) The wurtzite crystal structure of ZnO with the lattice parameters a and c indicated 

and (b) the calculated band structure of ZnO using the HSE hybrid functional 

 

ZnO is an n-type semiconductor which has wide band gap energy of 3.37 eV. It is well-

known that the unintentional n-type conductivity in ZnO is caused by the presence of oxygen 

vacancies or zinc interstitials. Since the defects have huge effects on doping, minority carrier 

lifetime and luminescence efficiency, the control of defects and, therefore, the associated charge 

carriers are very important for the properties of ZnO materials.  There are a number of intrinsic 
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defects in ZnO with different ionization energies: O vacancy (VO), Zn vacancy (VZn), Zn 

interstitial (Zni), O interstitial (Oi) and antisite Zn (ZnO). Zn interstitials and oxygen vacancies 

are the predominant ionic defect types in ZnO [1, 2]. 

Recently, many different organic donor materials have been investigated [3-5] while 

electron acceptors remain the bottleneck in these studies. The power conversion efficiency (PCE) 

of PSCs with [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) electron acceptors has 

reached up to 9%. However, there are some critical drawbacks with complex processing methods 

and oxidation of the acceptors in ambient conditions [6, 7]. Considering their stability under 

ambient conditions and high electron mobility, inorganic nanomaterials such as ZnO, CdSe and 

TiO2 are among the most suitable electron acceptors to incorporate with the polymer donor in 

hybrid solar cells [8-10]. Among these nanomaterials ZnO, a low temperature crystalline 

material, is one of the most promising electron acceptors for solar cells. The power conversion 

efficiency (PCE) of OSCs has been investigated through multidisciplinary attempts including 

designing new device structures, applying low band gap materials, and carefully controlling the 

morphology of the donor-acceptor molecular structure [11]. Optimization of the nano-

morphology of the inorganic thin films remarkably improves their optical and electronic 

properties. Thermal annealing techniques are widely used in organic, as well as inorganic, thin 

film solar cells to enhance their electrical and optical properties by enhancing crystallinity, 

reducing defects, and roughening the crystalline phases in the thin films [12-14]. 

Several studies were conducted to understand the role of ZnO as an electron transport 

layer embedded in PSCs. Sekine et al. [15] reported 4% PCE with 25% improvement for PSCs 

with ZnO electron accepting layer while Oh et al. [16] reported 3.39% PCE for ZnO 

nanoparticles (NPs) doped poly (3-hexylthiophene)/ [6, 6]-phenyl-C61-butyric acid methyl ester/ 
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(P3HT/PCBM) PSCs. P3HT/PCBM devices with ZnO nanoparticles, as an electron transporting 

layer, exhibited an improved power conversion efficiencies up to 3.26% [17]. Zhu et al. [18] 

obtained a 3.5% maximum PCE for PSCs with 15 nm diameter ZnO NPs incorporated in a buffer 

layer. Gao et al. [19] improved the PCE of PSCs from 3.03% to 3.84% via hydrogen treatment of 

ZnO electron transport layers.  

As discussed in chapter 4 and chapter 5, CuO NPs were successfully incorporated in the 

P3HT/PCBM active layer as a donor candidate. The combined effect of the P3HT and CuO NPs 

enhanced the optical absorption and exciton generation rate leading to better donor properties in 

the active layer. CuO is a p-type semiconductor with band gap energy of 1.5 eV, which is close 

to the ideal energy gap of 1.4 eV, and ZnO is an n-type semiconductor which has wide band gap 

energy of 3.37 eV.  Kidowaki et al. revealed the suitability of CuO/ZnO hetero-structure for 

solar cells [20, 21].  

The first part of this study demonstrates the enhancement of power conversion efficiency 

of PSCs containing CuO NPs incorporated in P3HT/ PC70BM film with a ZnO-NPs buffer layer. 

The second part is focused on the enhancement of power conversion efficiency of CuO NPs 

incorporated P3HT/PC70BM PSCs containing a ZnO-NPs buffer layer with thermal annealing 

treatment. The combined effect of CuO and ZnO-NPs was studied by UV–visible analysis, 

current voltage (J–V) characteristics, atomic force microscopy, and EQE measurements. In 

addition, the electrical performance of the hybrid solar devices is presented in this work. 
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6.2 Results and Discussion 

6.2.1 Electrical and Optical Performance 

The architecture of the energy levels and layer structure of hybrid solar cell devices is 

schematically shown in Figure 6.2(a) and Figure 6.2(b) respectively [22]. The highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy bands of 

P3HT are formed at −5.2 eV and −3.53 eV; respectively. Similarly, in the PCBM molecules, the 

HOMO and LUMO levels are formed at −6.3 eV and −3.9 eV; respectively [23]. The conduction 

band (CB) of the ZnO NPs aligns at −4.1 eV while the LUMO level of the PEDOT: PSS forms at 

-5.0 eV [24]. The energy difference between valence band (VB) and conduction band (CB) of 

the CuO NPs is found to be 2.14eV. Hence, the P3HT combined with CuO NPs forms a strong 

donor phase, which can produce more excitons (electron-hole pairs) into the structure. These 

donor materials and PC70BM acceptor molecules create a donor-acceptor (D/A) heterojunction, 

which can dissociate the excitons generated in the donor structure [25].  

The energy gradient highest occupied molecular orbital (HOMO) of P3HT (-5.2 eV) and 

conduction band edge of ZnO is close to 1.1eV resulting in a better exciton dissociation through 

fast electron injection to ZnO layer. The conduction band edge of ZnO (1.1 ev), when compared 

to the lowest unoccupied molecular orbital (LUMO) of P3HT (−3.53 eV) can also help the 

excitons dissociation in P3HT via rapid electron transfer to ZnO. Similarly, the arrangement of 

the energy levels of CuO and ZnO forms D/A pairs for rapid electrons transfer from CuO NPs to 

ZnO NPs. This rapid electron transfer will also help to dissociate the excitons. The ZnO NPs 

create a high potential barrier for holes in the P3HT to travel to the ZnO buffer layer. With a 

small forward bias stimulation, the electrons are moved to conduction bands (CB) of P3HT and 

CuO, and transferred to the LUMO of PC70BM acceptor materials as well as ZnO NPs. 
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Whereas, holes move from the donor to the ITO anode. If holes move to the ZnO layer, electrons 

and holes can be recombined generating leakage current, which leads to lower power conversion 

efficiency.  However, ZnO buffer layer provides an energy barrier to prevent hole penetration 

into the valence band (VB) of ZnO. 

 

 

 

 

 

 

 

 

 

Figure 6.2: Graphical representation of the hybrid device architecture (a) Layer structure with 

ZnO buffer layer, (b) energy level diagram 

 

The surface morphology of the active layers was studied by AFM as shown in Figure 6.3. 

AFM images show that the assembly of an electron transporting ZnO NPs layer on the active 

layer increases the roughness of the P3HT/PC70BM/CuO-NPs films. The measured root-mean-

square roughness (σrms) value of the P3HT/PC70BM/CuO layer was 0.33nm and after depositing 

the ZnO NPs layer on the active layer, the σrms value increased to 0.89nm. Sample E 

(P3HT/PCBM/CuO-0.6mg NPs with 40mg of ZnO NPs) exhibited a maximum surface 

roughness of 0.97nm. These roughened surfaces provide better interfacial contact with the Al 

layer and hence enhance the charge collection ability at the Al cathode. Also, enhanced 



www.manaraa.com

  

 102  

roughness can result in greater light absorption due to the diffuse reflection between the active 

layer and the cathode. In the ZnO NPs layers, the electrons mobility (6.6x 10-2 cm2 V-1 s-1) [26] 

is remarkably higher than that (1.7 x 10-4 cm2 V-1 s-1) [27] of the amorphous TiOx thin film. 

Hence, ZnO NPs layer can act as an effective electron transporting medium. 

 

 

Figure 6.3: AFM images of active layer (2x2 µm2 scans) with (a) P3HT/PCBM/CuO-0.6mg NPs 

(sample A), (b) P3HT/PCBM/CuO-0.6mg NPs with 20mg of ZnO NPs buffer layer (sample C), 

and (c) P3HT/PCBM/CuO-0.6mg NPs with 40mg of ZnO NPs buffer layer (sample E) 

 

The UV−visible absorption spectra of the P3HT/PC70BM, P3HT/PC70BM/CuO, and 

P3HT/PC70BM/CuO/ZnO, are comparatively shown in Figure 6.4. The wavelength range of 

these absorption spectra is between 350 nm and 550 nm. The absorption intensities of the 

fabricated devices exhibited enhancements over the entire range. The optical absorption peak 

intensity of the P3HT/PC70BM thin layer is 0.31 and after incorporating CuO NPs in the blend, 

absorption intensity was improved to 0.63. Meanwhile, the ZnO NPs buffer layer assembled 

P3HT/PC70BM/ CuO NPs increased the absorption intensity to 0.76. Therefore, the CuO NPs 

and ZnO NPs led to higher optical absorption in the solar cells over the entire wavelength range.  

A higher optical absorption yields more electrons-holes generation, higher carrier 

mobility, and more carrier injection to the electrodes resulting in better power conversion 
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efficiency of the solar device. As mentioned earlier, the roughness values of P3HT/PC70BM/ 

CuO assembled with a ZnO NPs buffer layer were improved and this rougher surface can reflect 

more light between the ZnO layer and the Al cathode. In addition, an increase in the surface area, 

due to higher surface roughness, enhances the absorption spectra of the P3HT/PC70BM/CuO 

and ZnO NPs compared to the P3HT/PCBM reference film [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Optical absorption spectra of the hybrid solar cells with CuO and ZnO NPs 

 

The EQE or the incident photon to current conversion efficiencies (IPCE) measurements 

describe the ratio between the incident photons on the solar cell, from the input source, and the 

generated free charges carriers by the solar cell. The enhanced light absorption, exciton 

dissociation rate, carrier collection at the electrodes and improved charge carrier mobility 
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strongly affect the EQE measurements. Figure 6.5 shows the corresponding EQE measurements. 

When the particle densities in the ZnO buffer layer were increased, relevant EQEs were 

proportionally increased in the wavelength range from 310nm to 650nm. The peak values of the 

EQE for samples A, B, C, D, and E are 54.6%, 56.8%, 61.8%, 60% and 57.7%; respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: EQE of the hybrid solar cells with ZnO buffer layer 

 

The EQE has a linear relationship with the Jsc of the solar cell devices. The Jsc is the 

major determinant of power conversion efficiency; where PCE= (Jsc*Voc*FF)/Pin. The Jsc values 

obtained for each cell followed a similar trend to EQE, which shows that the cells with 0.06 mg 

of ZnO NPs in the electron transport buffer layer exhibit the highest Jsc values. Table 6.1 

summarizes the photovoltaic performance parameters, such as Jsc, Voc, fill factor (FF), and PCE, 
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for all the fabricated devices.  The corresponding current−voltage (J-V) characteristics with AM 

1.5G irradiation (100 mW cm−2) of solar cells using different ZnO  NPs electron transporting 

buffer layers are shown in Figure 6.6.  

 

Table 6.1: Electric parameters of ITO/PEDOT:PSS P3HT/PCBM/CuO-0.6mg NPs/ZnO NPs/ Al 

solar cells. 

 

 

 

 

 

 

 

As shown in Table 6.1, the control device without ZnO electron transporting buffer layer 

shows Jsc of 6.48 mA cm−2, FF of 68.11%, Voc of 0.677 V and a power conversion efficiency 

(PCE) of 2.988%. However, PCE clearly increased after assembling the ZnO electron transport 

layer next to the P3HT/PC70BM/CuO layer. The optimum photovoltaic parameters were 

obtained by the devices with 20mg ZnO NPs (sample C) in the electron transport layer, which 

exhibit a Jsc of 7.620 mA cm−2, a FF of 74.47%, a Voc of 0.696 V and a PCE of 3.950%.  

However, as the ZnO NPs content increased further, the PCE of the solar cells decreased. 

The PCE of the device with 40mg of ZnO in the buffer layer decreased by 6.9%, and the 

photovoltaic parameters also decreased correspondingly to Jsc of 7.379 mA cm−2 and a reduced 

FF of 69.79%, leading to a final PCE of 3.68%. The fill factor (FF) mainly depends on the 

structural morphology of the active layer and the series resistance of the devices [29, 30].  
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Figure 6.6: J-V characteristics of hybrid polymer solar cells ZnO buffer layer 

 

However, the fill factor decreased from 74.47% to 69.79% with increasing the amount of ZnO in 

the buffer layer. The series resistance of the device increases with increasing the amount of ZnO 

NPs in the electron transport buffer layer (Table 6.1). This may be the main reason that Jsc and 

FF tend to decrease beyond the optimum amount of ZnO NPs in the samples. Furthermore, 

increase of ZnO NPs in the buffer layer, exceeding the optimum amount of 20 mg, allows the 

ZnO NPs to penetrate to P3HT/PCBM/CuO film and changing nanoscale morphology within 

P3HT/PCBM /CuO blend. This morphology change causes a significant reduction of 

donor/acceptor contact surface, thus lowering the EQE and Jsc of the cells. 

Open circuit voltage (Voc) has a linear relationship to the energized band levels within D-

A phases. The Voc of a hybrid solar cell can be increased by moving the polymer HOMO level 
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further away from the vacuum level [31]. However, Voc did not change significantly, possibly 

since the LUMOs of P3HT and PC70BM were constant; thus suggesting that the reduced 

recombination due to increased carrier mobility did not improve Voc. On the other hand, the 

HOMO energy level of P3HT in the active layer was not influenced by the ZnO buffer layer in 

the solar cell device. Therefore; ZnO-NPs did not enhance Voc in the solar cells [32]. 

 

6.2.2 Annealing Effect 

The performance characteristics of the devices which contain 0.6mg of CuO NPs and 

varying amounts of ZnO NPs in the buffer layer were measured after annealing at 200℃ for 30 

minutes. The photovoltaic parameters are shown in Table 6.2. 

 

Table 6.2: Performance parameters of PEDOT:PSS/P3HT/PCBM/CuO-NPs/ZnO NPs hybrid 

solar cells before and after heat treatment 200℃ for 30 minutes (B/A: before annealing, A/A: 

after annealing) 

 

 

The J-V characteristic parameters of the reference devices (0mg ZnO-NPs) after 

annealing revealed a Jsc of 7.777 mA/cm2. It increased to 8.949 mA/cm2 after assembling a 
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buffer layer containing 20 mg of ZnO NPs, an enhancement of 15%. This enhanced short circuit 

current density proportionally improved the PCE from 3.672% to 4.530%.  Following a similar 

trend, the fill factor increased from 69.53 to 74.77% after annealing treatments. The devices 

before annealing exhibited a PCE of 2.988% in the reference device and it improved to 3.950% 

with ZnO nanostructured buffer layer. The thermal annealing treatment contributed for about 

23% increase in PCE as a result of notably improved Jsc and FF. However, the open-circuit 

voltage (Voc) did not change significantly before and after annealing treatments.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: J-V characteristics of hybrid polymer solar cells ZnO buffer layer after annealing 

 

Based on power conversion efficiency equation (PCE = Voc*Jsc*FF/total incident power 

density) Voc, Jsc, and FF are significant factors in determining the overall PCE. Higher Voc, Jsc, 
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and FF result in higher PCE. The current density-voltage (J-V) characteristics of the solar cells 

before and after annealing are shown in Figure 6.7. 

The solar cell devices assembled with a ZnO buffer layer (20mg of NPs) and 0.6mg of 

CuO NPs were annealed at three different temperatures: 150oC, 200oC and 250oC, for 30 

minutes. The performance characteristics of these devices are summarized in Table 6.3. At all 

annealing temperatures, the devices show a significant improvement of PCEs compared to the 

devices without annealing treatment. The devices annealed at 200oC for 30 minutes, exhibit the 

optimum performance.  However, the lowest short circuit current density (Jsc) of 8.186 mA/cm2, 

open circuit voltage (Voc) of 0.674 V, filling factor (FF) of 69.05%, and PCE of 3.81% were 

obtained from the devices annealed at 250oC. The devices annealed at 150oC, exhibited a Jsc, Voc, 

FF and PCE of 8.870 mA/cm2, 0.675 V, 71.40% and 4.275%; respectively. 

 

Table 6.3: Performance characteristics of polymer solar cells with different annealing 

temperatures 

 

 

 

 

 

 

 

The Jsc improvement is closely related to the EQE trend. The corresponding EQE 

measurements (peak values) are shown in Figure 6.8. When the particle densities in the ZnO 

buffer layer were increased, the relevant EQEs proportionally increased in the wavelength range 

from 310nm to 650nm. Before annealing, the devices had highest EQEs of 54.6%, 56.8%, 
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61.8%, 60% and 57.7%; respectively. However, after annealing the peak values of the EQE for 

samples with 0 mg-ZnO, 10 mg-ZnO, 20 mg-ZnO, 30 mg-ZnO, and 40 mg-ZnO were 55.5%, 

57.8%, 62.9%, 61.4% and 56.7%; respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Effect of thermal annealing on the EQE values of PSCs with ZnO buffer layer 

 

Here, the P3HT/PCBM/CuO NPs structure provides two main electron-transporting 

paths: a conventional path through the PCBM molecules and hopping sites created by CuO NPs. 

The CuO NPs produce dense PCBM clusters with hopping sites creating an efficient electron 

flow towards the ZnO electron transport layer. The enhancement of EQE measurements is 

generally attributed to improved PCBM molecules. The ZnO electron transport buffer layer 

provides extremely high electron transporting facility to the Al electrodes uplifting the EQE 

profile. Therefore, the separated free electrons from excitons, created in P3HT and CuO NPs 
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phases, can be transported through interconnected PCBM domains and CuO NPs hopping 

centers towards the ZnO buffer layer.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Optical absorption spectra of PSCs with CuO and ZnO NPs before and after 

annealing 

 

 

To further study the effect of heat treatment on the optical properties of ZnO buffer layer 

assembled P3HT/PC70BM/0.6mg-CuO NPs PSCs, the UV visible absorption spectra were 

obtained, as shown in Figure 6.9. After thermal annealing, the absorption intensities of all 

devices were enhanced. The optical absorption peak intensity of the P3HT/PC70BM/CuO NPs 

thin layer is 0.64 and after ZnO NPs buffer layer assembling, the absorption intensity was 

improved to 0.76. However, the annealing treatment of the ZnO NPs buffer layer assembled 

P3HT/PC70BM/ CuO NPs devices increased the absorption intensity to 0.81. Consequently, the 
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CuO NPs, ZnO NPs as well as thermal annealing led to higher optical absorption in the solar 

cells over the entire wavelength range. The increased absorption intensities are attributed to the 

enhanced crystallinity of P3HT by thermal annealing combined with improved optical absorption 

caused by CuO/ZnO NPs incorporated in the solar cell devices. Improved optical absorption 

yields higher charge carrier generation rate, better carrier mobility, and higher carrier injection to 

the electrodes resulting in better power conversion efficiency of the solar devices [33, 34]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: XRD pattern of ZnO NPs sample 

 

Figure 6.10 shows the XRD patterns of ZnO NPs. Different peaks were observed at (2θ) 

= 31.81o, 34.31o, 36.14o, 47.40o, 56.52o, 62.73o, 66.28o, 67.91o, and 69.03o were assigned to 

(100), (002), (101), (102), (110), (103), (200), (112), and (201) of ZnO NPs, indicating that the 
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sample has a polycrystalline wurtzite structure. There are no other characteristic impurities peaks 

observed which also confirm that the product obtained is in a high purity ZnO phase.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: XRD spectra for 0.6 mg of CuO NPs incorporated P3HT/PCBM thin films 

 

The XRD spectra of the P3HT/PC70BM/0.6mg-CuO NPs samples were obtained before 

and after thermal annealing. The XRD spectra, shown in Figure 6.11, illustrate improved peak 

intensities over the 2θ range from 4.5o to 6o.  The increased diffraction peaks for P3HT: 

PC70BM: CuO NPs thin films are contributed to the improved self-organization of P3HT 

molecules leading to higher crystallinity. It is well known that P3HT and PC70BM are 

crystalline and amorphous materials; respectively. Therefore, P3HT/PC70BM and CuO NPs 

blend is a partially crystalline structure. The thermal annealing of 0.6mg-CuO NPs facilitate 
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P3HT chains to escape from the amorphous phase and rearrange as separate molecules within the 

polymer blend leading to P3HT/ PC70BM phase separation [35, 36]. 

Surface morphological studies of the active layers were carried out using AFM. AFM 

images, presented in Figure 6.12, show that  the thermal annealing increases the surface 

roughness of the nanostructured ZnO films which is assembled on the P3HT/PC70BM/CuO NPs 

thin film. The measured root-mean-square roughness (σrms) value of the P3HT/PC70BM/CuO 

layer was 0.33nm and after depositing the ZnO NPs layer on the active layer, the σrms value 

increased to 0.91nm. However, after annealing, the optimum sample (P3HT/PCBM/0.6mg-CuO 

NPs with 20mg of ZnO NPs) exhibited a maximum surface roughness of 1.12nm. The rougher 

surfaces increase the interfacial contact area with the Al layer leading to higher charge collection 

ability at the Al cathode. Also, enhanced roughness can result in greater light absorption due to 

the diffuse reflection between the active layer and the cathode. Therefore, annealing of 

nanostructured ZnO thin films at 200oC for 30 minutes optimizes the surface condition of the 

thin layers. 

 

 

 

 

 

 

 

 

Figure 6.12: AFM images (2D) of active layer: (a) P3HT/PC70BM/0.6mg CuO NPs (b) 

P3HT/PCBM/CuO-0.6mg NPs with 20mg of ZnO NPs buffer layer (c) P3HT/PCBM/CuO-

0.6mg NPs with 40mg of ZnO NPs buffer layer after annealing 
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6.3 Conclusion 

In this study, ZnO nanoparticles are incorporated in an electron transport buffer layer 

assembled on top of the P3HT/PC70BM/CuO NPs active later. After incorporating the electron 

transport layer, the PCE increased from 2.988% to 3.950% in the cells containing 20mg ZnO-

NPs (sample C) in the buffer layer, which is equivalent to a 32.19% improvement in efficiency. 

The higher performance is attributed to enhanced EQE, electron mobility, exciton dissociation 

and optical absorption due to CuO and ZnO NPs in the device. The optical absorption spectrum 

exhibited significant improvement in the presence of ZnO-NPs buffer layer due to the elevated 

exciton generation rate. AFM analysis show an increase in surface roughness of the active layer 

after depositing the ZnO nanoparticles incorporated electron transport buffer layer, which results 

in a larger contact area between ZnO and the Al cathode.  

In order to investigate the annealing effect on the devices, all the devices were thermally 

annealed at three different temperatures which are 150oC, 200oC and 250oC, for 30 minutes. The 

devices which were annealed at 200oC for 30 minutes exhibited the optimum performance. The 

PCE for the cells containing 20mg of ZnO-NPs increased from 3.95% to 4.53% after heat 

treatment at 200℃ for 30 minutes. The improved performance is attributed to enhanced EQE, 

electron mobility, surface roughness and optical absorption due to the presence of CuO and ZnO 

NPs in the devices. In addition, the optical absorption spectrum exhibited significant 

improvement after thermal annealing treatment due to the elevated exciton generation rate. AFM 

analysis shows an increase in surface roughness of the ZnO nanoparticles incorporated electron 

transport buffer layer after thermal annealing. The enhanced roughness results in greater light 

absorption due to the diffuse reflection between the active layer and the cathode which results in 



www.manaraa.com

  

 116  

a larger interfacial contact area between ZnO and the Al cathode leading to higher charge 

collection ability at the Al cathode.  
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CHAPTER 7 

Objective 4: Improvement of Hole Collection Ability in Polymer 

Solar Cells Using Au NPs 

 

7.1 Introduction 

The PSCs have several obstacles for further efficiency improvement due to the limited 

charge collection, the short exciton diffusion length and the low carrier mobility. Previous 

studies have revealed that the Au NPs improve the optical absorption and hole collection at the 

anode yielding better power conversion efficiency [1]. After incorporation of Au NPs in the 

PEDOT:PSS layer, the Au NPs contribute to the improvement of the PCE through enlarging the 

interfacial contact area between active layer and PEDOT:PSS buffer layer. Also Au NPs improve 

the PEDOT:PSS electrical conductivity. Therefore, the investigation of the performance changes 

of PSCs with Au NPs is highly important and desirable to better understand the physics within 

the ‘plasmonic’ PSCs [2]. 

Metal nanoparticles such as Au NPs, with diameters ranging from 1 to 100 nm, are 

natural links between molecules and extended solids. They are complex many-electron systems, 

potentially tunable with particle size and shape. Metal nanoparticles provide interesting and 

unique optical and electronic properties due to the localized surface plasmon resonance effect 

(LSPR). The LSPR can occur in illuminated metallic nanoparticles, like gold nanoparticles (Au-

NPs), when oscillations of the incident electric field resonate with the surface electronic charges 

on those nanoparticles [3, 4]. This oscillation of the charges around the particle surface causes a 

positive and negative charge separation with respect to the ionic lattice, forming a dipole 

oscillation along the direction of the electric field of the light as shown in Figure 7.1(a) [5]. The 

maximum oscillation amplitude occurs at a specific frequency, called surface plasmon resonance 
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(SPR). This LSPR causes strong optical absorption which can be measured using a UV–Vis 

absorption spectrometer. Also, LS allows Au-NPs to absorb light in the visible region of the 

spectrum leading to intensification by a factor of 100 in the electromagnetic (EM) field 

surrounding them [6]. 

 

 

 

 

 

 

 

Figure 7.1: (a) Schematic indication of surface plasmon resonance on plasmonic nanoparticles 

[5] and (b) an illuminated nanoparticle 

 

As theoretically explained by Mie theory, the LSPR band intensity and wavelength rely 

on the factors which affect the electron charge density on the particle surface; such as particle 

size, shape, structure, composition and the dielectric constant of the surrounding medium. The 

LSPR can be divided into two types which are: scattering and absorption. If a small particle is 

illuminated by light, its electrons are set in an oscillatory motion, which generates radiation at 

the same wavelength in all directions [7]. This process is called scattering. If the particle 

transfers the energy of the exciting light to another energy source, e.g. heat, the light is said to be 

absorbed (the energy is transferred into vibrations of the lattice known as phonons). The total 

extinction of the light beam by the sample contains contributions of both scattering and 

absorption, and the extinct energy is the sum of the absorbed and scattered energy. The 
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absorption and scattering of light by a small particle involves solving Maxwell’s equations with 

relevant boundary conditions. Considering the harmonic time dependence of the light source, the 

Maxwell’s equations can be rewriten in vector wave equation form; 

                      ∇4� + >4� = 0                                                         (7.1) 

     ∇4
 + >4
 = 0                                                        (7.2) 

where k is the wave number (>4 = �4�Í), � is the dielectric function, and Í is the 

magnetic permeability. The � and Í are discontinuous at the boundary between the particle and 

the medium. Figure 7.1 (b) shows a particle with optical constants �� and Í�  embedded in a 

medium with optical constants �� and Í�. The illuminated plane wave generates an electric field 

E1 and a magnetic field H1 inside the particle. The particle radiates a scattered field in all 

directions, leading to an electric field of E2 and a magnetic field of H2 outside of the particle. The 

tangential components of the fields are continuous based on Maxwell’s equations. At the 

arbitrary point h on the particle surface; 

          q�4(h) − ��(h)r × Zô = 0                                                  (7.3) 

         q
4(h) − 
�(h)r × Zô = 0                                                 (7.4) 

Important parameters that can be calculated with Mie theory is the absorption, scattering, and 

extinction cross sections for an arbitrary spherical particle. Since extinction is the sum of the 

scattered and absorption, the absorption cross section can be written as; 

          }Ô³�. = }0Õ�. − }��Ô.                                                         (7.5) 

These scattering and extinction cross sections can be calculated as; 

}��Ô. = 4N
E3 ∑ (2Z + 1)(|A-|4 + |´-|4)\-Ì�                                    (7.6) 

}0Õ�. = 4N
E3 �g(A- + ´-)                                                  (7.7) 

The coefficients an and bn are constant which relate to Ricatti-Bessel functions of order n. 
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Consequently, Au-NPs are popular in thin film solar cells since they enhance the light 

absorption by employing far-field or near-field effects associated with the localized surface 

plasmon resonance (LSPR) in the thin film [8]. Tremendous research work has been carried out 

on tuning the polymer solar cells with Au-NPs as shown in Table 2.1. However, no conclusive 

work has been conducted to optimize the PCE of PSCs using both CuO NPs and Au NPs 

incorporated in the active layer and hole transport layer respectively. This research work shows 

the increment of PCE and Jsc of P3HT/PC70BM bulk heterojunction solar cells by addition of 

gold (Au) and copper oxide (CuO) NPs in the PEDOT:PSS and active layer respectively. The 

combine effect of Au NPs in the PEDOT:PSS and CuO NPs in the P3HT/PC70BM on the device 

efficiency were studied by External quantum efficiency (EQE), atomic force spectroscopy 

(AFM), UV absorption and their current density- voltage (J-V) characteristics. 

 

7.2 Results and Discussion 

7.2.1 Performance Characteristics 

The composition and structure of the fabricated cells is represented as: ITO/PEDOT:PSS 

(with various amount of Au-NPs)/P3HT/PCBM (with 0.6 mg CuO-NPs)/Al. The Table 7.1 

shows the summarized photovoltaic parameters, such as Jsc, Voc, fill factor (FF), and PCE [9], of 

all the fabricated devices. Summarized data indicates that the Voc remained nearly the same after 

adding Au-NPs into PEDOT:PSS layer. The Jsc shows an increment from 6.484 to 7.491 

mA/cm2. FF values enhanced from 68 to 69.21%. These improved Jsc and FF influenced on PCE 

and it was enhanced from 2.963 to 3.51%. The incorporation of Au-NPs in the PEDOT:PSS 

layer contributed to about 18% increase in PCE due to the notably enhanced Jsc and improved 
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FF. With increasing concentrations of Au-NPs in PEDOT:PSS layer up to 0.06 mg, the PCE of 

the solar cells increased proportionally and then started to decline significantly beyond that point. 

 

Table 7.1: Device parameters of ITO/PEDOT:PSS (with Au-NPs)/P3HT/PCBM/ CuO-0.6 mg 

NPs/Al solar cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: J-V characteristics of hybrid polymer solar cells with different amount of Au NPs in 

PEDOT: PSS layer 
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The J-V characteristics of six PSC devices which contained different amounts of Au NPs in 

the PEDOT:PSS layer are shown in Figure 7.2. The performance of cells has improved with 

increasing Au-NPs in the PEDOT:PSS layer. 

The Jsc has a linear relationship with the EQE of the solar cell devices (Equation 2.51). The 

EQE measurers the ratio between the incident photons on the solar cell from the input source and 

the generated free charges carriers by the solar cell. EQE spectra of six different solar cells were 

first conducted to better elucidate improved Jsc. Corresponding EQE spectra for solar cells are 

presented in Figure 7.3. According to the Equation 2.51, λmin and λmax represent the starting 

wavelength (300 nm) and the ending wavelength (800 nm) in the EQE spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: EQE of the hybrid solar cells with various Au NPs concentrations in PEDOT: PSS 
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The maximum EQE values were found to increase with the increasing amounts of Au-NPs 

in the PEDOT:PSS layer and then decreased as the amount of Au-NPs was increased beyond 

0.06 mg. The Jsc values obtained for each cell followed a similar trend to EQE, which shows that 

the cells with 0.06 mg of Au NPs in the PEDOT:PSS layer exhibit the highest Jsc values. Figure 

7.4 depicts the corresponding EQE and Jsc behaviour respectively. For successful photovoltaic 

operation, EQE can be determined by five major steps, these steps are composed with inherent 

efficiency components (equation 2.52) [10]. 

 

 

 

 

 

 

 

 

 

  

Figure 7.4: EQE and Jsc of the hybrid solar cells 

Generally, photo absorption and carrier generating ability of a polymer thin film are 

represented by the photon absorption (ηA) efficiency. The photo absorption of a semiconductor 

thin film is controlled by the energy band structure, light absorption coefficient and the 
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photoactive layer thickness of the device. The surface morphology of the thin film also will 

affect the absorbance of the bulk heterojunction photoactive layer. Free charge carriers, which 

are produced by the light absorption, contribute effectively to enhance the Jsc of a hybrid device 

[11]. In hybrid solar cell fabrication, metal and inorganic nanoparticles can be used to enhance 

the photon absorption yield and improve the surface morphology of the thin films. This indicates 

that generated free electron composition of the metal and inorganic nanoparticles can influence 

the Jsc of the polymer based devices as well. 

 

 

 

 

 

 

 

 

 

Figure 7.5: Optical absorption spectra of the hybrid solar cells with various Au NPs 

concentrations in PEDOT: PSS layer 
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To understand the Jsc enhancement, the UV-vis absorption measurements of the solar cells 

were obtained with and without Au-NPs in the PEDOT:PSS layer. The optical absorption spectra 

of Au nanoparticle incorporated PEDOT:PSS/ P3HT/PCBM/ CuO-NPs solar cells are shown in 

the Figure 7.5. 

 

7.2.2 Plasmonic Effect of Au NPs in the PEDOT: PSS Layer 

The physics of plasmonic effect of Au-NPs doped into the PEDOT:PSS layer, which has 

been studied previously by Fung et al. [12], is in good agreement with our data. The absorption 

spectra of the PEDOT:PSS/P3HT/PCBM/CuO-NPs devices did not show any significant 

improvement increase of Au NPs concentration in the PEDOT:PSS thin film, as shown in Figure 

7.5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Electric field distribution in the PEDOT:PSS:Au NPs/ P3HT:PCBM PSCs [12] 
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This is caused by the strong near field surrounding the Au NPs due to the LSPR which is 

distributed horizontally through the PEDOT:PSS thin film, instead of penetrating upward into 

the P3HT/PC70BM layer, thus causing less optical absorption (Figure 7.6). 

However, the EQE spectra of the PEDOT:PSS:Au NPs devices increased significantly with 

the Au-NPs. Addition of 0.06 mg Au-NPs exhibit the highest EQE of 61% at a wavelength of 

500 nm, as shown in Figure 7.3. At higher concentrations of Au-NPs, the EQE started to 

decrease. This is in good agreement with the trend of Jsc. It appears that; there is a discrepancy 

between light absorption and EQE spectrum. According to Equation (2.52), in addition to the 

light absorption, factors such as exciton dissociation rates and charge collection efficiencies also 

contribute to the magnitude of EQE. Therefore, it can be concluded that electrical effects, instead 

of plasmonic effects, play a major role in the solar cell performance. Since PEDOT:PSS layer 

(with or without Au NPs) did not significantly contributed to the photon absorption, the light 

absorption measurements only represent the inherent light harvesting within the active layer 

composed of P3HT/PC70BM/CuO-NPs. The absorption spectra in Figure 7.5, which show 

insignificant difference, indicate that the light absorption in P3HT/PCBM is unaffected by the 

incorporation of Au-NPs. 

The AFM surface morphology of the PEDOT:PSS:Au-NPs thin films with various 

concentrations of Au-NPs, is shown in Figure 7.7. The AFM images showed a clear 

enhancement in surface roughness with increasing the Au-NPs concentrations in PEDOT: PSS 

layers. The σrms of the control layers was 0.37 nm and it was enhanced to 1.26 nm in the samples 

containing 0.18 mg of gold NPs. The cell with 0.06 mg of Au-NPs exhibited a surface roughness 

value of 0.86 nm as the best performed solar cell (Table 7.2). 
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Table 7.2: The root-mean-square roughness σrms(nm) values of the Au NPs added PEDOT: PSS 

layers 

 

 

 

 

 

 

 

 

Figure 7.7: AFM images (non-contact mode) of PEDOT:PSS layers (2 × 2 µm scans) with (a) No 

Au NPs, (b) 0.02 mg Au NPs, (c) 0.06 mg Au NPs, (d) 0.10 mg Au NPs, (e) 0.14 mg Au NPs, (f) 

0.18 mg Au NPs 

 

Fung et al. [12] as well as Hsu et al. [13] reported that a higher anode surface roughness 

leads to an increase in the interface contact area between the anode and the active layer in 

addition to shorter routes for holes to travel to the anode. This will cause to a higher efficiency of 
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hole collection; thus improving the Jsc of the devices. The holes collected at the anode can be 

independent from the external electric field by reducing the mean distance between the generated 

holes and the PEDOT:PSS which leads to higher fill factors (FF). Li et al. [14] suggested that the 

excitonic dissociation is encouraged by the defects sites, generated from rough P3HT/PCBM 

surface. The increased σrms of the PEDOT:PSS layer with presence of Au-NPs increases the 

contacting area between PEDOT:PSS and P3HT/PCBM. Hence, it improves the hole collecting 

ability at the roughened interface between PEDOT:PSS and P3HT/PCBM molecules leading to 

enhanced device performance. The electron and hole movability in polymer films is an important 

factor which depends on the charge carrier hopping rate and it should be high enough to avoid 

the carrier recombination. 

It was suggested by Kim et al. [15] that the Au NPs introduce dopant states in molecular 

structure which can produce hopping sites for the holes resulting in a higher hole mobility. 

However, further increase of Au NPs, exceeding the optimum amount of 0.06 mg, allows the Au 

NPs to penetrate to P3HT/PCBM film and changing nanoscale morphology within P3HT/PCBM 

blend. This morphology change causes a significant reduction of donor/acceptor contact surface. 

The modified donor/acceptor contact surface proportionally affects the excitonic dissociation, 

thus lowering the EQE and Jsc of the cells [16]. 

 

7.2.3 Effect of CuO NPs in the Active Layer 

The active layer of the device is composed of P3HT as the donor, PC70BM as the acceptor 

material and 0.6 mg of CuO-NPs. Even though the PEDOT:PSS layer did not exhibit absorption 

enhancement with or without Au-NPs, the P3HT/PC70BM active layer displayed a significant 

enhancement in absorption after incorporating CuO-NPs into the active layer. The absorption 
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spectrum of the reference cell, shown in Figure 7.5, is related to the absorption enhancement due 

to the CuO-NPs in the active layer. The P3HT molecules and CuO-NPs can generate excitons 

after absorbing the light photons with the energy than the Eg value (1.99 eV for P3HT and 2.14 

eV for CuO-NPs) which reach to the P3HT/PC70BM and CuO-NPs/PC70BM interfaces 

respectively. Since there is no penetrated electric field to obstacle their motion through 

conjugated polymer, they diffuse by the force created with concentration gradient. This exciton 

diffusion to D/A interfaces is an essential phenomenon for exciton dissociation. The excitons 

which could not travel to D/A interface will not produce charge carriers (electrons or holes). 

The PSCs with CuO NPs incorporated active layer can provide better routes for carrier 

transportation through inter-particle hopping sites in the structure which lead to an enhanced 

charge collection efficiency. It could be the possible reason behind the improved PCE of CuO-

NPs incorporated PSCs. The optimum amount (0.6 mg) of CuO-NPs together with unbroken 

nanostructure creates an excellent interconnected network for the D/A nanoscale interlinking. 

Furthermore, the inter-nanoparticle hopping is encouraged by this system providing direct and 

efficient carrier transport routes for electrons and holes. Additionally, improved excitonic 

diffusion and carrier transport efficiencies imply that the life-time of the photo-generated carriers 

in detached state is enhanced, reducing the recombination probability. These factors will 

positively improve the EQE and FF, and thereby PCE. 

The charge injecting possibility from the photo active layer to the electrodes is represented 

by the charge collection efficiency. The Au-NPs in the PEDOT:PSS also provide a better facility 

for hole collection at the anode. The magnitude of the conduction band energy level of the 

accepter material is a critical parameter for better electron injection into the cathode. For possible 

electron injecting, this should be lower than the work function of donor. Correspondingly, the 
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magnitude of conduction band energy level should be greater than the work function of the 

anodic material for possible hole injection to anode. Figure 7.8 shows the energy level structure 

of the PEDOT:PSS/P3HT/CuO/PCBM device. 

 

Figure 7.8: Energy band diagram of the P3HT/PCBM/CuO NPs device [17] 

 

As illustrated in the diagram, conduction and valence bands of P3HT and PC70BM are 

most suitable for donor and acceptor pair. The energy levels of the conduction and valence bands 

of CuO NPs are comparable with the lowest unoccupied molecular orbital (LUMO) and highest 

occupied molecular orbital (HOMO) of PC70BM acceptor. Therefore, CuO-NPs/PC70BM are a 

suitable donor and acceptor pair and a semiconductor heterojunction can be formed between 

them. The energy band structures of the PEDOT:PSS and Au-NPs are compatible with the 

energy levels of P3HT providing a better route for holes. The created electrons in the active layer 

could be transferred from the conduction bands of the CuO and P3HT to PC70BM. Similarly the 

separated holes can be diffused from the valence bands of the CuO and P3HT to the ITO through 
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the Au-NPs and PEDOT:PSS. CuO is a p-type, direct transition band gap inorganic 

semiconductor providing a great photo absorption in the active layer. Hence, CuO-NPs can be 

used as an efficient electron injector in the active layer. 

The Au and CuO-NPs incorporated nanostructures have excellent transport roots for free 

electrons and holes through different possible pathways: 1) the conventional interconnected 

PCBM molecules, 2) the incorporated Au and CuO NPs, 3) the partially crystalline PCBM/P3HT 

and PEDOT:PSS amorphous domains composed with CuO and Au-NPs respectively. These 

multiple routes increase the carrier mobility and thus significantly enhance the EQE and PCE. 

 

7.2.4 SEM and EDX Analysis 

The SEM image of layer structure of the fabricated Au-NPs/PEDOT:PSS/ CuO NPs/P3HT: 

PCBM device is shown in the Figure 7.9(b). The Au-NPs (18 nm diameter) added PEDOT: PSS 

layer has approximately 40 nm thickness. To eliminate the charge recombination losses, 

thickness of the P3HT/PCBM active layer was maintained at 100–150 nm. The EDX mappings 

of copper atoms in the active layer and Au in the PEDOT:PSS layer of the optimum solar cell 

with 0.06 mg of Au-NPs are shown in Figures 7.9(a) and 7.9(c). This can be used to indicate the 

distribution of CuO and Au NPs in the active layer and PEDOT:PSS layer respectively. It clearly 

illustrates that both NPs in the PEDOT: PSS and active layers are uniformly distributed avoiding 

agglomeration. 

Open circuit voltage (Voc) has a linear relationship to energized band levels within D-A 

phases [17]. The Voc of a hybrid solar cell can be increased by moving the polymer HOMO level 

further away from the vacuum level [18]. However, Voc did not change significantly, possibly 

since the LUMOs of P3HT and PC70BM were constant; thus suggesting that the reduced 
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recombination due to increased carrier mobility did not improve Voc. On the other hand, the 

HOMO energy level of P3HT in the active layer was not influenced by the Au-NPs in the 

PEDOT:PSS layer. Therefore; Au-NPs do not enhance Voc in the solar cells, either. 

 

Figure 7.9: (a) EDX mapping showing the distribution of Au NPs in the PEDOT: PSS layer (b) 

SEM image of the hybrid polymer solar cell (c) EDX mapping showing the distribution of 

elemental copper in the P3HT/PCBM active layer 

 

7.3 Conclusion 

In this study, Au-NPs were added at different amounts to the PEDOT:PSS layer of solar 

cells containing 0.6 mg of CuO-NPs in the P3HT/PC70BM layer in order to increase the power 

conversion efficiency. The PCE increased from 2.96% to 3.51% in the cells containing 0.06 mg 

Au-NPs, which is equivalent to 18.5% improvement in efficiency. The higher performance is 

attributed to enhanced EQE, charge collection, exciton dissociation and interfacial distribution. 

The charge transport process was facilitated by providing better pathways in a continuous 

internal structure and hopping sites. The optical absorption spectrum did not change significantly 

in the presence of Au-NPs in the PEDOT:PSS layer due to the strong near field around Au-NPs. 

However, AFM analysis showed an increase in surface roughness of the PEDOT:PSS layer with 

Au-NPs, which indicates a larger contact area between PEDOT:PSS and the active layers. The 
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photon absorption and charge harvesting increased remarkably due to the presence of CuO NPs 

in the active layer. EDX mappings revealed a uniform distribution of both Au and CuO NPs in 

the PEDOT:PSS and active layers; respectively. 
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CHAPTER 8 

Conclusions and Future Work 

8.1 Summary and Conclusions 

Low power conversion efficiency is a major concern of organic polymer solar cells since 

its initial development. It is believed that the lack of knowledge in several major steps; including 

exciton generation, exciton diffusion, exciton dissociation, charge carrier transportation, and 

charge extraction may have attributed to this difficulty in improving the power conversion 

efficiency. Our work focuses on enhancing the power conversion efficiency and expanding the 

current understanding of the above mechanisms in organic solar cells. In order to address these 

issues, nanoparticles of specific inorganic materials were incorporated in the polymer thin films. 

The experimental results suggest that these hybrid nanostructured thin films improve the 

performance of the devices through optical, electrical and morphological enhancement. The main 

research conclusions are summarized below: 

1. CuO NPs incorporated P3HT/PC70BM thin films were used to improve optical, electrical 

and morphological properties. It was found that the CuO NPs enhance the optical 

absorption by enhancing the P3HT crystallinity in the P3HT/PC70BM thin films. 

Furthermore, CuO NPs improve the surface roughness of the solid state organic thin films. 

These factors proportionally enhanced the performance of the devices by increasing EQE, 

Jsc and PCE. However, excess amounts of CuO NPs reduced the electrical performance by 

increasing the film thickness and the agglomeration of the CuO NPs in the active layer.  

2. Thermal annealing of P3HT/PC70BM/CuO NPs thin films at 150ºC for 30 minutes further 

improved the morphology and crystallinity of the active layer. Furthermore, adding 0.6 mg 

of CuO NPs to the active layer resulted in the formation of the smallest polymer 
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crystallites, which was nearly 38.58 nm, after annealing. The surface roughness increased 

in the thin films with CuO NPs, which is a further indication of enhanced crystallinity.  

3. ZnO NPs buffer layer which was assembled on the top of P3HT/PCBM/CuO active layer 

significantly increased the optical absorption of the devices. The electron affinity of the 

ZnO to the polymer semiconductors improved the dissociation rate of the excitons 

generated in the donor structure. Also, the ZnO NPs buffer layer improved the electron 

mobility, and charge collection at the anode. These factors increased the Jsc and PCE of the 

devices. 

4. Au NPs which were incorporated in the PEDOT:PSS layer did not improve the optical 

absorption significantly of the devices; since the LSPR was distributed horizontally through 

the PEDOT:PSS thin film, instead of penetrating upward into the P3HT/PC70BM layer. 

However, the Au NPs improved the morphological properties; such as the surface 

roughness of the PEDOT:PSS films. In addition, Au NPs improved the electrical 

conductivity of the hole transport layer, thus reducing the series resistance. Consequently, 

the reduced resistance and enhanced morphology increased the EQE, Jsc and PCE. 

 

8.2 Future Outlook 

Throughout this work, it became clear that the incorporation of inorganic nanoparticles in 

the bulk heterojunction polymer solar cells is a promising approach to enhance the performance 

of organic solar cells. However, Future investigations are needed in several areas related to this 

work; such as: (1) to explore the effect of CuO NPs both in the PEDOT:PSS and active layers. 

Our findings revealed the effect of CuO NPs in the active layer. However, the incorporation of 

CuO NPs in the hole transport layer (PEDOT:PSS), along with CuO NPs are in the active layer, 
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could further improve the electrical and morphological properties of the PEDOT:PSS layer; (2) 

the incorporation of both CuO NPs and Au NPs in the active layer can further improve the light 

absorption in the device. Therefore, it is suggested that future studies explore the mutual effect of 

both NPs in the active layer. 

In addition, further consideration needs to be given for increasing the long term structural 

stability and life time of the devices. For longer applications, the bulk heterojunction solar cell 

systems, which are not in equilibrium state, can undergo structural changes. The heating, due to 

solar radiation, can change the structure of the polymer chains and this heat does not contribute 

to charge carrier generation. Therefore, a main challenge will be to understand the effect of 

structural degradation from thermal aging of the polymer and to develop a solution accordingly. 

Similar to the morphological effect, the optical absorption also changes with time.  

Consequently, an investigation on the optical absorption performance with different time 

intervals is an essential future work in this field. Furthermore, the reduced series resistance is 

important to optimize the fill factor of the devices, therefore, work attempting to minimize these 

resistances is critical for improving the performance of solar cell devices. 
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